BREEZE - 1.2 - Incident Analyst

From BREEZE Software - Models for Accidental Releases
  • Price:$4,995 USD
0.511.522.533.544.55 (0 votes)
BREEZE  - 1.2 - Incident Analyst
Incident Analyst, the successor to the BREEZE HAZ suites, is our software suite designed to predict the potential toxic, fire, and explosion impacts from chemical releases.

Overview

Image

BREEZE Incident Analyst incorporates a suite of industry standard neutrally buoyant and dense toxic gas dispersion models to predict chemical concentration and flammability levels; thermal radiation fire models to predict radiation fluxes and temperature rise; and explosion models to predict blast force overpressures.   

Incident Analyst includes:

  • DEGADIS
  • SLAB
  • INPUFF
  • AFTOX
  • Confined & Unconfined Pool Fire
  • BLEVE
  • U.S. Army TNT Equivalency
  • U.K. HSE TNT Equivalency
  • TNO Multi-Energy
  • Baker-Strehlow


What's New in Version 1.2

  • Enhanced scientific validation of INPUFF, DEGADIS, AFTOX, and SLAB
  • Ability to enter multiple meteorological records in INPUFF for a single model run
  • Incorporates new functionality for variable emission rates incorporated into INPUFF
  • Includes new DEGADIS executables, which were released in 2012 by the U.S. EPA
  • Utilizes an enhanced debugging process for ER 1, ER 2, and ER 3 file inputs in DEGADIS
  • Simplification of DEGADIS ER file inputs
  • Ability to save/load/backup chemical databases
  • Addition of the maximum distance calculation for the levels of concern in DEGADIS jet model runs
  • Addition of the toxic corridor width calculation in AFTOX
  • Implementation of various bug fixes

Features

Image

In addition to the technical capabilities of BREEZE Incident Analyst, the product is easy to use and quick to run. An intuitive interface guides the user through entering required and optional inputs associated with a potential chemical release (e.g. size and position of tank rupture, shape of storage tank, spill volume, and existence of an impoundment basin), and selecting the appropriate algorithms. Results are provided in both tabular and graphical formats including 2D contour, 3D volume, and time-series chart.

Program Characteristics

  • Incorporates established, proven models developed by the U.S. EPA, U.S. military and Coast Guard, and industry groups
  • Utilize well-documented, widely-accepted models: understand what your model is doing rather than trusting proprietary “black box” models
  • Achieve trustworthy results for a fraction of the cost and time of CFD systems
  • Reduce or eliminate the need to hunt for chemical properties with built-in chemical database
  • Shorten model setup and execution time with intuitive ribbon bar interface and scenario templates
  • Includes BREEZE 3D Analyst for visualization of results, export to Google Earth, etc

Toxic/Flamable Gas Dispersion Models

  • Model dense gas plumes and evaporating chemical pools with DEGADIS and SLAB
  • Model neutrally-buoyant gas plumes, including mobile sources, with AFTOX and INPUFF
  • Simplify computation of release characteristics (e.g. exit velocity and temperature) when they are not explicitly known with the Source Term Wizard
  • Translate results from raw concentrations to designation of safe and hazardous areas quickly with Level of Concern database (e.g. IDLH and PEL for toxic gases, LEL or LFL for flammable gases)

Fire (Thermal Radiation) and Explosion (Overpressure) Models

  • Predict thermal radiation exposure and temperature rise with the unconfined pool fire, confined pool fire, vertical jet fire (flare), and BLEVE models
  • Model vapor cloud explosions with Baker-Strehlow, TNO Multi-Energy, U.S. Army TNT Equivalency, and U.K. HSE TNT Equivalency models

Dispersion Models

BREEZE Incident Analyst provides a wide range of dispersion models for analyzing accidental releases of toxic chemicals. The program is ideal for emergency response and planning as well as modeling accidental release scenarios for regulatory programs like the U.S. EPA's Risk Management Program (RMP).

DEGADIS
DEGADIS is a dense gas dispersion model that estimates concentrations downwind from an accidental chemical release where the dispersing toxic or flammable substance is initially heavier than air.

SLAB
SLAB is a dense-gas dispersion model used to estimate pollutant concentrations downwind from an accidental chemical release that is heavier than air.

INPUFF
INPUFF is a Gaussian puff model that simulates the atmospheric dispersion of neutrally buoyant or buoyant chemical releases. The model accounts for point sources and a release duration that is either finite or continuous.

AFTOX
AFTOX is a Gaussian puff/plume dispersion model that estimates concentrations downwind from accidental chemical releases where the dispersing plume has the same density as air.

Fire Models

Confined Pool Fire
Originally developed for the Gas Research Institute (GRI) and models a fire that occurs when liquid is ignited in a confined area such as a dike or a tank. The dike may be circular or rectangular. The model calculates the distance to various radiation levels specified by the user and also allows for the calculation of the dynamic temperature rise of a nearby target.

Unconfined Pool Fire
Developed for the GRI and models a fire that occurs when an unconfined spreading pool of liquefied fuel gas ignites. The model calculates the distance to various radiation levels specified by the user (e.g, the 5 kW/m2 level specified by the U.S. EPA in the 112(r) RMP regulations, or the radiant flux levels specified in the U.S. federal standard 49 CFR 193.2057 for LNG facilities) and calculates the radiation flux as a function of time at a given distance as the pool spreads.

BLEVE
Developed for the GRI and models a fire that may result from the leak or rupture of a pipeline containing a compressed or liquefied gas under pressure. The model calculates the distance to various radiation levels specified by the user and can calculate the dimensions of a high velocity jet flame ensuing from a ruptured pipeline.

Explosion Models

If a quantity of flammable material is released, it will mix with the air and may result in a flammable vapor cloud. If this flammable vapor cloud finds an ignition source a vapor cloud explosion may result. Two main methodologies exist for modeling the explosion resulting from a vapor cloud explosion:

  • TNT Equivalency methods
  • Methods based on the fuel-air charge blast

The explosion models include the following widely accepted approaches:

U.S. Army TNT Equivalency
Based on the work of the U.S. Army, this model uses a proportional relationship between the flammable mass in the cloud and an equivalent weight of TNT and assumes that the entire flammable mass is involved in the explosion and that the explosion is centered at a single location. The model uses one of two blast curves, depending upon whether the explosion being modeled is a surface burst or a free-air burst.

U.K. HSE TNT Equivalency
Based on the work of the U.K. Health and Safety Executive (HSE), this model uses a proportional relationship between the flammable mass in the cloud and an equivalent weight of TNT. It assumes that the entire flammable mass is involved in the explosion and that the explosion is centered at a single location.

TNO Multi-Energy
This model treats the explosive potential of the vapor cloud as a corresponding number of equivalent fuel-air charges. The vapor cloud explosion is modeled as a series of sub-blasts with each sub-blast corresponding to a potential blast source within the cloud.

Baker-Strehlow
Based on the work of Baker and Strehlow, this model takes into account the variability of the blast strength by expressing the explosion as a number of fuel-air charges, each with individual characteristics.

BREEZE Software and Data / Trinity Consultants
BREEZE Software and Data / Trinity Consultants
12770 Merit Drive, Suite 900
Dallas ,  TX 75251

RELATED ARTICLES

  • - indicates free access

Post a New Comment

1 Comments

Showing 1 to 1 (oldest first)

  1. I am a Chemical Engineering student from Bangladesh. I am working on dispersion modeling of accidental toxic gas release. Can i get a trial version of breeze software? trial version will be used for academic purpose.

Environmental XPRT is part of XPRT Media All Rights Reserved
Subscribe