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Abstract Highly symmetrical molecules such as CH4,
CF4 or SF6 are known to be atmospheric pollutants and
greenhouse gases. High-resolution spectroscopy in the
infrared is particularly suitable for the monitoring of gas
concentration and radiative transfers in the earth’s
atmosphere. This technique requires extensive theoretical
studies for the modeling of the spectra of such molecules
(positions, intensities and shapes of absorption lines).
Here, we have developed powerful tools for the analysis
and the simulation of absorption spectra of highly
symmetrical molecules. These tools have been imple-
mented in the spherical top data system (STDS) and
highly-spherical top data system (HTDS) software avail-
able at http://www.u-bourgogne.fr/LPUB/shTDS.html.
They include a compilation of modeled data obtained
during the last 20 years. An overview of our latest results
in this domain will be presented.
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Introduction

Among the various gaseous pollutants that are present in
the earth’s atmosphere, the greenhouse gases require
careful monitoring for the global warming survey. These
species are very strong absorbers in the infrared region
and some of them are chemically “inert” in the sense that
they hardly react with other molecules and thus have a
long or even extremely long lifetime in the atmosphere.
These compounds have various natural or non-natural
sources. The most abundant greenhouse gas is carbon

dioxide (CO2). Nonetheless, several other gases, even if
present in much lower quantities, must be taken into
account since their absorption is much stronger than that
of CO2. Table 1 shows selected data about important
greenhouse gases, and especially their so-called “global
warming potential” (GWP). This value compares the
ability of a given molecule to trap heat in the atmosphere
compared to CO2 (that has thus a GWP equal to 1). More
precisely, the GWP of a greenhouse gas is the ratio of
global warming (both direct and indirect), also known as
radiative forcing, between one unit mass of a greenhouse
gas and one unit mass of carbon dioxide over a period of
time.

The quantitative remote sensing of molecular species
in the atmosphere is usually done by means of infrared
absorption spectroscopy, either from the ground or from
balloons (Pieroni et al. 2001) or satellites. It is thus
necessary to develop precise models able to reproduce
molecular absorption spectra in both frequency and
intensity. CH4, CF4 and SF6 are highly symmetrical
molecules. Such compounds, also called “spherical-top”
molecules have complex vibration – rotation spectra,
which require specific theoretical treatment. During the
last 40 years, our group has developed models for
handling such complex spherical-top spectra (Moret-
Bailly 1959, Champion et al. 1992). Spectrum calcula-
tions and fitting programs implementing these methods,
as well as results from analyses, are available using the
STDS (Wenger and Champion 1998) and HTDS (Wenger
et al. 2000) software.

The aim of the present paper is to give an overview of
what can be done with the STDS and HTDS tools in the
field of greenhouse gas spectroscopy. Thus, after recalling
a very few basic properties of XY4 and XY6 molecules
and their spectroscopy, we will review the cases of
methane, sulfur hexafluoride and carbon tetrafluoride.
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Theoretical considerations

Readers interested in the detailed theory of spherical-top
spectra can refer to several of our previous papers
(Champion et al. 1992; Cheblal et al. 1999). In this
section, we will focus on the specific aspects of the
methods developed and used in our group.

In order to determine gas concentrations in the
atmosphere, it is necessary to compare in situ or remote
spectroscopic measurements with synthetic spectra. This
requires the calculation of transition frequencies and
intensities. Both depend strongly on the symmetry of the
molecule. Here, we consider so-called “spherical-top”
molecules (molecules whose ellipsoid of inertia is a
sphere), i.e., either tetrahedral molecules of type XY4 or
octahedral molecules of type XY6. Their symmetry point
group is thus either Td or Oh, respectively. Examples of
such molecules with their main symmetry elements are
shown in Fig. 1.

Tetrahedral XY4 molecules possess four fundamental
frequencies of vibration, usually labeled by n1, n2, n3 and
n4. Vibrations n1 and n3 correspond to stretching motions,
while n2 and n4 correspond to bending motions. It is
possible to observe the n3 and n4 fundamental frequencies
in infrared absorption and all four fundamental frequen-
cies using the Raman scattering technique. This can be

explained by symmetry considerations that we will not
develop here.

In the same way, octahedral XY6 molecules have six
fundamental frequencies of vibration, usually labeled by
n1, n2, n3, n4, n5 and n6. Vibrations n1, n2 and n3 are
stretching modes, while n4, n5 and n6 are bending modes.
Only the n3 and n4 fundamental frequencies can be
observed by infrared absorption, while only n1, n2 and n5
can be observed using Raman scattering. The n6 mode is
optically inactive. This last point has some consequences
that we will discuss later for SF6.

Each vibrational band has a very complex rotational
structure. The specificities of our approach for the
analysis and the calculation of rotation-vibration spectra
of these species can be summarized as follows:

- The fundamental, harmonic and combination bands of
vibration are usually grouped in packets called
polyads. Figure 2shows a schematic example of a
vibrational polyad scheme of a molecule. The exis-
tence of such polyads results in well-defined absorp-
tion regions or "windows" in the spectra. Our method
consists of a step-by-step study of the different
polyads: P0(the ground state), P1, P2, ...

All these techniques are implemented in the programs
included in the STDS (Wenger and Champion 1998) and

Fig. 1 a A tetrahedral molecule like CH4. b An octahedral
molecule like SF6. Examples of symmetry axes are given (C3 and
C4 are rotations of 2p/3 and 2p/4, respectively, and S4 is a rotation
of 2p/4 combined with an inversion of all coordinates). The spectra
strongly depend on these symmetry properties

Fig. 2 Vibrational polyads for a molecule and examples of possible
absorption transitions. Such a structure results in well-defined
absorption windows, as shown in Fig. 3a in the case of methane

Table 1 Selected data about important greenhouse gases. Concentration is given in parts per trillion (1012) in volume (pptv)

Gas Global warming potential Lifetime (years) Concentration (pptv) Annual increase (%)

CO2
a, b 1 ~250 0.360�109 0.4

CH4
a, b 21 ~12 1.720�106 1.6

CF4
a, b 6,500 ~50,000 75.0 1.0

SF6
a, c 23,900 ~3,200 3.8 8.0

SF5CF3
d 22,200 ~3,500 0.12 –

a http://www.epa.gov b Khalil 1999 c Geller et al. 1997 d Sturges et al. 2000
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HTDS (Wenger et al. 2000) packages. Moreover, specific
methods have also been developed for the modeling of
line shifts and line broadenings that are induced by
collisions between molecules. This is essential for the
remote sensing of gas mixtures like the earth’s atmo-
sphere. This point will be discussed later when dealing
with the case of methane.

Methane (CH4)

Methane is a relatively abundant constituent of planetary
atmospheres. It is also one of the major greenhouse gases
on earth (Table 1) with many natural, industrial or
agricultural sources. As a result, remote sensing applica-
tions require good knowledge of its spectroscopic
parameters: position, intensity, air-broadened line width,
lower-state transition energy, self-broadened line width,
temperature dependence of the air-broadened width and
the air-broadened pressure shift. In recent years, labora-
tory studies have resulted in significant revisions of these
molecular line parameters in the public databases (Roth-
man et al. 1992; Rothman et al. 1998; Goldman et al.
2000).

The main difficulties in modeling the vibration –
rotation spectrum of methane arise from the existence of
essential degeneracies (induced by symmetry properties),
accidental resonances (between stretching and bending
vibrational motions) and broad rotational fine structure
(large inertia constant).

The accuracy of the modeling of the methane infrared
(IR) spectrum is enough to satisfy the needs of atmo-
spheric applications: a few 10�3 cm�1 for line positions
and a few percent for line intensities, including 12CH4,
13CH4 and CH3D.

The low-resolution overview infrared spectrum of
methane plotted in Fig. 3a reflects its polyad structure.
Numerous experimental and theoretical studies have been
devoted to its analysis over decades. At present, the lower
polyads (P0: ground state – P1: dyad – P2: pentad – P3:
octad) covering the region from 0 to 4,850 cm–1 can be
considered as well known.

Appropriate effective frequency and intensity models
have been developed and applied to analyses of the
ground state (Champion et al. 1989a; Roche and Cham-
pion 1991), in the range below 10 mm, the dyad (Brown et
al. 1989; Champion et al. 1989b; Roche and Champion
1991; Ouardi et al. 1996) from 5 to 10 mm (see Fig. 4),
and the pentad (Hilico et al. 1994; F�jard et al. 2000) from
3 to 5 mm. The analysis of the next polyad (octad)
observed from 2 to 3 mm has recently been performed
(Hilico et al. 2001). The upper polyad (tetradecad, P4) is
only partially analyzed (Robert et al. 2001).

The line parameters of the dyad system (n2 and n4
interacting bands) are modeled with an accuracy of
0.00006 cm�1 for positions and 3% for intensities
respectively. For the pentad system (n1, n3, 2n2, n2+n4,
2n4) around 3 mm, the accuracy achieved is 0.002 cm–1 for

positions and 3% for intensities (see Fig. 4). Selected
transitions from the n3 band of CH4 are proposed as
secondary standards with absolute accuracy of 0.002 cm–1

for positions and 2% for intensities. Figure 3b shows an
overview of the strongest n3 band. Of course, all the lines
shown on this last figure have their own complex
substructure that can be observed at higher resolution.

In addition to 12CH4, the next two main isotopomers
(13CH4 and CH3D) contribute also significantly to the
absorption spectrum. They have motivated several works.
In particular, a global analysis of nine interacting bands of
CH3D in the 3 mm region has been published recently
(Nikitin et al. 2002). Further details, updates and refer-

Fig. 3 Simulation of the infrared absorption spectrum of methane
at different resolutions. a is an overview of the first polyads in the

Fig. 4 Distribution of measured line intensities in the region of the
n3 band of methane. Each dot represents a transition. The intensity
scale is logarithmic, showing that strong as well as very weak
transitions are considered in the analysis
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ences are available at http://www.u-bourgogne.fr/LPUB/
methane/metspec.htm

Let us now say a few words about the problem of line
shapes which we illustrate with the case of methane. As
already explained, the remote sensing and detection of
such molecular species as spherical tops in the atmo-
sphere is usually done through the measurements of
spectra in the infrared region. In most of the thermody-
namic conditions encountered in this medium, a given
spectrum cannot be modeled as a simple sum of profiles
over all the individual lines. While the line widths do
depend on the individual quantum numbers of the lines,
the collisional transfers of populations in the lower and
upper states of the transitions induce a phenomenon
known as “line-mixing”, or collisional coupling of lines
(Pieroni et al. 1999, 2000, 2001; Grigoriev et al. 2001).
As a consequence, the spectrum of a given vibrational
band must be calculated as a whole, to give satisfactory
agreement with the measurements.

Sulfur hexafluoride, SF6

Some new interest in sulfur hexafluoride studies has
appeared recently, since this compound has proved to be a
species of growing importance in the field of atmospheric
physics and chemistry (Reddmann et al. 2001). In fact, it
is now recognized as a pollutant that can contribute to the
greenhouse effect (Khalil 1999; Dervos and Vassiliou
2000). This molecule is a by-product of electrical
industries. Because of its chemical stability and diffusion
properties, it is also the “air” in “Nike Air” shoes. At
present, the concentration of SF6 in the earth’s atmo-
sphere is small, but increases at a rate of about 7% per
year due to industrial emissions (Geller et al. 1997; Volk
et al. 1997). Moreover, its lifetime in the atmosphere is
very long, reaching 3,200 years (Geller et al. 1997; Volk
et al. 1997) or maybe even more (Reddmann et al. 2001)
as shown in Table 1. This molecule is also observed at
low altitude, near large urban areas (Ho and Schlosser
2000). The small, but regularly increasing SF6 concen-
tration is also used to understand gas transport and
circulation phenomena in the middle atmosphere (Eklund
1999; Hall et al. 1999; Khalil 1999; Manzini and Feichter
1999; Ray et al. 1999; Kjellstr�m et al. 2000) or to
monitor the distribution of other pollutants such as
chlorofluorocarbons (CFCs) (Hurst et al. 1997; Wamsley
et al. 1998; Romashkin et al. 1999). For all these reasons,
correct quantitative measurements and monitoring of SF6
in the earth’s atmosphere is necessary.

However, as we have shown in Boudon and Pierre
(2002) and in earlier papers (Boudon et al. 1998, 2001;
Bermejo et al. 2000), that the spectroscopy of this
molecule is still not very well known. The present
knowledge about SF6 spectroscopy is very limited
compared to methane for instance. In particular, the
region of the n3 fundamental frequency near 948 cm–1 is
of great importance since its very strong absorption is
responsible for the huge greenhouse capabilities of SF6.

Nevertheless, if the n3=1 level itself is very well known
(Acef et al. 2000), the hot bands in this region, which
largely contribute to the absorption (remember that the
ground state population is only 30% at 300 K), are very
poorly known. The knowledge of these hot bands requires
the study of many other vibrational states, especially
those with low energy.

Up to now, only one hot band of SF6 has been analyzed
in detail: n4+n6�n6 in the n4 bending region (Boudon et al.
2001). Several vibrational levels have been analyzed with
the aim of understanding the much denser n3 region.
However, this work is in progress and still requires a lot
of effort, from both the experimental and theoretical
sides. One important technical difficulty arising when
dealing with octahedral molecules like SF6 is related to
the n6 bending mode. This vibration, which is the lowest
in energy and thus very important for hot band generation,
is inactive in both infrared absorption and Raman
scattering (see Theoretical considerations). Thus, some
of our recent works (Boudon et al. 1998, 2001), although
they do not concern the n3 region directly, intended to
collect indirect information on this mode through the
analysis of combination levels associated with this
vibration. The final aim of this is the analysis of n3+n6�n6.

Figure 5 shows a comparison between data from the
existing databases and an actual experimental spectrum of
the n3 region. While in this case the HTDS simulation and
the HITRAN data (Rothman et al. 1992; Rothman et al.
1998) give quite similar results, the lack of hot band data
is very clear when compared to the real spectrum. We are
presently working on the analysis of the most important

Fig. 5 Comparison between STDS and HITRAN simulations of the
n3 stretching fundamental of SF6 with an experimental spectrum
from N. Lacome
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hot bands in the region, namely n3+n6�n6 and n3+n5�n5.
The last one should benefit from our recent study of the
Raman spectrum of n5 (Boudon and Bermejo 2002).

As for methane, the problem of line broadening of SF6
transitions in an SF6/N2 mixture has been treated recently
in the case of the n3 band (Gamache et al. 2001).

Tetrafluoromethane (CF4)

The spherical top data system (STDS) and highly-
spherical top data system (HTDS) databases contain
parameters for several other spherical-top molecules. The
most interesting as far as atmospheric absorption is
concerned is CF4. As for SF6, this is an important
greenhouse gas with an extremely long lifetime in the
atmosphere as shown in Table 1 and in several references
(Harnisch et al. 1996; Khalil 1999). Furthermore, CF4 is
one of the most important polyfluorocarbons (PFCs)
measured in the earth’s atmosphere. It is one of the by-
products of aluminum manufacturing. Its concentration is
increasing at ~1% per year. However, the CF4 spectros-
copy is even less known than that of SF6. Figure 6 shows
an example of STDS calculation for the very strongly
absorbing n3 stretching fundamental (Gabard et al. 1995)
and also illustrates how the spectrum calculations can be
extrapolated to higher J values than those that were
measured experimentally.

Conclusion

We have presented the spherical top data system (STDS)
and highly-spherical top data system (HTDS) spectro-
scopic tools for the simulation of spherical-top spectra.
Compared to other classical databases such as HITRAN
(high-resolution transmission molecular absorption data-

base; Rothman et al. 1992, 1998; Goldman et al. 2000),
these packages offer the advantage that they not only
provide computed lists of measured transition frequencies
and intensities, but rather programs and parameter files
that allow the user to calculate spectra for specific
physical conditions. This allows extrapolation to higher
temperatures, pressures, or excited levels, within some
reasonable limits, of course.

We have discussed the examples of CH4, SF6 and CF4.
It is clear that, even for the widely studied methane
molecule, a lot of work still has to be done for the
complete and precise modeling of the absorption spectra.
Our group will thus continue its efforts in this direction.
At the same time, similar tools will be developed for other
types of molecules, which are also of atmospheric
interest.
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