Only show results available in Virginia? Ok

Hydrogen Sulfide (H2S) Applications

  • Hydrogen Sulfide (H2S) monitoring

    Hydrogen sulfide is the chemical compound with the formula H2S. H2S is colorless, toxic and flammable and is responsible for the foul odour of rotten eggs and flatulence. Hydrogen sulfide often results from sulfur reducing bacteria in nonorganic matter (in the absence of oxygen), such as in swamps and sewers (anaerobic digestion). H2S also occurs in volcanic gases, natural gas and some well waters.

    By Ecotech Pty Ltd based in Knoxfield, AUSTRALIA.

  • Sulfide Oxidation with Hydrogen Peroxide (H2O2)

    Sulfide Odor Control Sulfide is found throughout the environment as a result of both natural and industrial processes. Most sulfide found in nature was produced biologically (under anaerobic conditions) and occurs as free hydrogen sulfide (H2S) - characterized by its rotten egg odor. We are most likely to encounter biogenic H2S in sour groundwaters, swamps and marshes, natural gas deposits, and sewage collection/treatment systems. Manmade sources of H2S typically occur as a result of natural materials containing sulfur (e.g., coal, gas and oil) being refined into industrial products. For a variety of reasons - aesthetics (odor control), health (toxicity), ecological (oxygen depletion in receiving waters), and economic (corrosion of equipment and infrastructure) - sulfide laden wastewaters must be handled carefully and remediated before they can be released to the environment. Typical discharge limits for sulfide are < 1 mg/L. Sulfide Treatment Alternatives There are dozens of alternatives for treating sulfide laden waters, ranging from simple air stripping (for the low levels present in groundwaters) to elaborate sulfur recovery plants (used to treat several tons per day at refineries and coal burning power plants). There are processes based on biology (using compost filters, scrubbing media, or inhibition/disinfection), chemistry (oxidation, precipitation, absorption, and combination), and physics (adsorption, volatilization, and incineration). Each process occupies a niche which is often defined by the scale and continuity of treatment, whether the sulfide is in solution or is a gas, the concentration of sulfide involved, and the disposition of the sulfide containing medium. However, for reasons relating to convenience and flexibility, chemical oxidation (using hydrogen peroxide) continues to grow in its scope of application. Treatment with Hydrogen Peroxide While other peroxygens such as permonosulfuric (Caro’s) acid, peracetic acid, and persulfates will oxidize sulfide, their use for this application is overkill. Hydrogen peroxide (H2O2) is considerably simpler and more cost-effective. H2O2 may control sulfides in two ways, depending on the application: Prevention - by providing dissolved oxygen which inhibits the septic conditions which lead to biological sulfide formation; and Destruction - by oxidizing sulfide to elemental sulfur or sulfate ion.

    By USP Technologies based in Atlanta, GEORGIA (US) (USA).

  • Water Disinfection for Oil and Gas Water Treatment

    Economic, environmental and operational demands challenge drilling operators to produce results in a highly regulated and competitive environment. MIOX chemical generators offers an efficient, effective, low cost solution for treating high volumes of water and achieve a superior bacterial kill. And because MIOX technology operates with salt, water and electricity, there are virtually no health, safety or environmental concerns at the drill site or down-hole.

    By MIOX Corporation based in Albuquerque, NEW MEXICO (USA).

  • Odor Scrubbers Applications with Hydrogen Peroxide

    Hydrogen Peroxide as a Replacement for Sodium Hypochlorite Hydrogen peroxide may be used in both mist scrubbers and packed tower scrubbers as a replacement for sodium hypochlorite (bleach). Like bleach, the process involves two concurrent mechanisms: 1) absorption of the odors (H2S) into the alkaline scrubbing solution; and 2) oxidation of the absorbed sulfide in solution. Step 1: H2S + NaOH → NaSH + H2O Step 2: 4H2O2 + H2S → H2SO4 + 4H2O Typical dose ratios are 5 parts H2O2 per part H2S or, when used in place of bleach, one gallon 50% H2O2 for every 10 gallons of 15% sodium hypochlorite (NaOCl). This generally translates into a break-even cost scenario. Sufficient caustic soda (NaOH) is added to maintain a pH of 10.0 - 10.5 in the scrubbing solution. There is also in practice a process which uses H2O2 in series with bleach to scrub composting odors. This process relies on a series of three packed tower scrubbers: the first is a pH neutral water wash (to remove ammonia and amine odors); the second uses a conventional caustic/bleach solution in which the bleach is purposely overdosed (to oxidize the complex organic sulfur odors); and the third uses a caustic/H2O2 solution (to remove the unreacted chlorine vapors carried over from the second stage). H2O2 + HOCl → HCl + H2O + O2 Typical dose ratios are 0.5 parts H2O2 per part hypochlorite (OCl-), with sufficient caustic soda (NaOH) added to maintain a pH of 8.5 in the scrubbing solution.

    By USP Technologies based in Atlanta, GEORGIA (US) (USA).

  • Premium

    Hydrogen sulfide removal in sludge management

    In the treatment of sanitary sewage, bio-solids are separated from the liquid. These bio-solids are concentrated and dewatered using filter presses, centrifuges, or other devices. Hydrogen sulfide and mercaptans are released during the dewatering operation.  Carus permanganates react quickly and produce immediate results for hydrogen sulfide removal in order to provide a safe, odor free environment and minimize corrosion due to sulfides.

    By Carus Corporation based in Peru, ILLINOIS (USA).

  • Hydrogen sulfide removal treatment for oil and gas industry

    The chemicals used for treating for H2S in the oil and gas industry can sometimes be just as hazardous as the H2S itself. MIOX wants to eliminate these hazardous chemicals and let oil & gas companies create their own safe chemistry on-demand as they need it. Whether it is high volume treatment, or low volume treatments in the middle of nowhere with no resources, we have a solution for your need.

    By MIOX Corporation based in Albuquerque, NEW MEXICO (USA).

  • Premium

    Advanced water treatment equipments for hydrogen sulfide removal

    The presence of hydrogen sulfide in home drinking water supplies is not a health hazard, but is a common nuisance contaminant whose distinctive `rotten egg` odor makes water treatment desirable. Several treatment methods are available, and often hydrogen sulfide can be treated and removed using the same process and equipment used for iron and manganese removal.

    By Advanced Equipment and Services, Inc. (AESINC) based in Coconut Creek, FLORIDA (USA).

  • Disposal wells treatment for oil and gas industry

    Treating the water being injected for disposal is not always considered by operators. This is likely costing you money in the long run. Removing iron, heavy metals, and treating out ammonia is a benefit to treating with MIOX’s mixed oxidant solution. While these are benefits of the technology, the most important is the elimination of bacteria which can cause Hydrogen Sulfide (H2S), corrosion pitting, poor injectivity and other problems, resulting in great well workover frequency. Treating injection wells does not need to be expensive, and can be treated as you inject.

    By MIOX Corporation based in Albuquerque, NEW MEXICO (USA).

  • Premium

    Measurement of hydrogen sulfide & carbon disulfide in air for continous emission monitoring

    The Series 8900 Hydrogen Sulfide and Carbon Disulfide Analyzer provides direct measurement of H2S and CS2 in ambient air. This instrument is utilized for continuous emission monitoring. The Series 8900 H2S and CS2 Analyzer employs a Photoionization detector (PID) as the sensing element. A dual column configuration with timed backflush to vent is used to strip off moisture and heavier hydrocarbons. A pre-cut column is used in series with the analytical column. At sample injection a fixed volume of sample is carried to the pre-cut column. Backflush is timed so that only the H2S, CS2, and other similar components are eluted to the analytical column. Contaminants on the pre-cut column are backflushed to vent. H2S and CS2 are separated from potentially interfering components on the analytical column and elute to the detector for analysis.

    By MOCON, Inc. - Baseline based in Lyons, COLORADO (USA).

Need help finding the right suppliers? Try XPRT Sourcing. Let the XPRTs do the work for you