Only show results available in Virginia? Ok

acid waste system Applications

  • Continuous emission monitoring for municipal waste incineration

    Local authorities incinerate domestic waste and other kinds of waste that typically include plastics, batteries and a diversity of unknown compounds. These may all produce acidic and other toxic emissions. Therefore, efficient flue-gas cleaning systems are needed to prevent their release into the environment.

    By Enviro Technology Services plc based in Stroud, UNITED KINGDOM.

  • Premium

    Applications and Air Pollutants Removed in Hazardous, Solid and Liquid Waste Treatment Operations

    Venturi scrubbers with FORCE FLUX Condensation technology and Wet Electrostatic Precipitators for industrial, municipal, sewage sludge and pathological waste incinerators to remove micron, submicron particulate, heavy metals and acid gases. Special quencher/scrubber systems for dioxin removal. HCL scrubbing from PVC plastic waste burning. Fine particulate, acid gases and NOx removal on munitions destruction. Cleanup of all pollutants from liquid waste incinerators and other high temperature destruction processes. Acid and particulate emissions from electronic board and metals recovery operations.

    By Bionomic Industries Inc. based in Mahwah, NEW JERSEY (USA).

  • Premium

    Applications and Air Pollutants Removed in the Petroleum/Petrochemical Industry

    Scrubbing of Hydrogen sulfide, mercaptans and other organosulfur compounds from sour gas and other sources. Proprietary regenerative scrubbing chemistries for hydrogen sulfide removal with sulfur production. By-product production systems for producing sodium hydrosulfide (Nash) from hydrogen sulfide. Sulfur dioxide scrubbing. Recover catalyst dust from FCC units. HCL storage tank vent scrubbing. Removal of HCL and particulate from thermal oxidizers burning chlorinated plastics. Marine drilling platforms sulfur dioxide thermal oxidizer emissions.  Asphalt plant scrubbers and hydrogen sulfide emissions from holding tanks. Pilot plant scrubber systems for hydrogen sulfide. Removal of halogenated and sulfur bearing gaseous compounds from high temperature thermal oxidizers and drilling platforms waste. Well drilling hydrochloric acid storage tanks.

    By Bionomic Industries Inc. based in Mahwah, NEW JERSEY (USA).

  • Premium

    Air Pollution Control Solution for the FGD - SO2

    Flue Gas Desulfurization (FGD) involves the removal of sulfur dioxide and other acids from flue gases. Typical sources of acid gases include fossil fuel boilers, waste combustors, and other industrial applications such as refining and smelting. The Macrotek wet and dry FGD systems can achieve over 99% acid removal by using a variety of reagents, including caustic, sodium carbonate, lime and limestone, and waste alkaline solids or liquids.

    By Macrotek Inc. based in Markham, ONTARIO (CANADA).

  • Environmental technology for water treatment industry

    In many fields of water treatment Körting ejectors are applied as gas introducing systems; Waste water aeration in aeration tanks and SBR-Plants. Introducing ozone or oxygen. Pressurised dissolved air flotation. Disinfection of potable water and de-acidification.  Further applications are: Diluting and conveying acids and lye during the process of regenerating ion exchangers.

    By K├Ârting Hannover AG based in Hannover, GERMANY.

  • Wastewater treatment solutions for anaerobic sludge digestion sector

    Anaerobic digestion is a series of processes in which microorganisms break down biodegradable material in the absence of oxygen, used for industrial or domestic purposes to manage waste and/or to release energy. It is widely used as part of the process to treat wastewater, like Upflow Anaerobic Sludge Blanket (UASB) reactors. As part of an integrated waste management system, anaerobic digestion reduces the emission of landfill gas into the atmosphere. Anaerobic digestion is widely used as a renewable energy source because the process produces a methane and carbon dioxide rich biogas suitable for energy production, helping to replace fossil fuels. The nutrient-rich digestate which is also produced can be used as fertilizer. The digestion process begins with bacterial hydrolysis of the input materials in order to break down insoluble organic polymers such as carbohydrates and make them available for other bacteria. Acidogenic bacteria then convert the sugars and amino acids into carbon dioxide, hydrogen, ammonia, and organic acids. Acetogenic bacteria then convert these resulting organic acids into acetic acid, along with additional ammonia, hydrogen, and carbon dioxide. Finally, methanogens convert these products to methane and carbon dioxide.

    By QM Environmental Services Ltd. based in The Hague, NETHERLANDS.

Need help finding the right suppliers? Try XPRT Sourcing. Let the XPRTs do the work for you