Only show results available in Virginia? Ok

bod 5 Applications

  • Premium

    Environmental dewatering solutions for municipal sewage and wastewater treatment

    TenCate Geotube technology dewaters primary, secondary and overflow sludge from the sewage treatment plants’ digesters and lagoons. This municipal dewatering solution is used in water and wastewater treatment applications including lagoons, tanks, and digester cleanouts.  The containers can provide dewatering and containment in one operation, with 85% to 90% reduction of BOD in the effluent. Most of the time, the dewatered effluent is clear and safe enough to be returned to the sewage treatment plants.

    By TenCate Geosynthetics Netherlands bv based in AE in Nijverdal, NETHERLANDS.

  • Wastewater solutions for municipal sewer control

    Problem: A significant portion of the operational costs of a conventional municipal wastewater treatment plant employing an aerobic biological treatment unit comes from electricity costs associated with aeration. In many cases, the aeration rates are kept at the maximum level to ensure that the plant’s effluent is in compliance with the regulations. The critical parameter for regulatory purposes and treatment efficiency, BOD, takes 5 days to measure through standard methods providing almost no value to the plant operators in terms of adjusting aeration rates and chemical dosing.

    By Real Tech Inc. based in Whitby, ONTARIO (CANADA).

  • Headworks Odor and Corrosion Control Using Hydrogen Peroxide

    Hydrogen Peroxide typically controls odors and corrosion at treatment plant headworks by direct oxidation of hydrogen sulfide (H2S) within the wastewater. In the direct oxidation mode, H2O2 is applied to the wastewater 5-30 minutes prior to the point where the odors are being released, generally as the wastewater line enters the plant boundary. The efficiency of hydrogen peroxide treatment depends upon the available reaction time, the level of iron in the wastewater (reaction catalyst), wastewater pH and temperature, and the initial and target levels of H2S odor. Under optimal conditions, effective dose ratios are 1.2 - 1.5 parts H2O2 per part dissolved sulfide, and can be reliably estimated through beaker tests. H2O2 + H2S → S0 + 2H2O Frequently, control of odors through the primary clarifiers is wanted. In such case, the mechanism of control is both direct oxidation of H2S (as it rises from the solids blanket), and prevention of odor generation (by supplying dissolved oxygen). Control is typically achieved with a booster dose of 1-2 mg/L H2O2 added to the clarifier influent. Higher doses or alternate modes of addition may be required in cases where: 1) hydraulic retention times are > 2-3 hours; 2) solids blanket depths are > 1-2 feet; 3) soluble BOD levels are > 200-300 mg/L; or 4) waste activated sludge is co-settled with the primary solids. 2H2O2 → O2 + 2H2O

    By USP Technologies based in Atlanta, GEORGIA (US) (USA).

Need help finding the right suppliers? Try XPRT Sourcing. Let the XPRTs do the work for you