bod monitoring Applications

7 Results found
Only show results available in Virginia?
OK
  • Keyword: bod monitoring ×

TOC Correlation to BOD or COD

by GE Analytical Instruments     based in Boulder, COLORADO (USA)

Challenge: Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) are traditional parameters analyzed in the laboratory to determine organic matter in water and wastewater. Wastewater facility operators need to have constant data to monitor their discharges and optimize treatment processes (biological treatment, chemical dosing, etc). The requirements of BOD and COD analysis prevent them from being implemented as control parameters, however. The BOD five-day analysis time requirement does not allow an operator to use the data for process optimization and. although COD requires less time than the BOD, its analysis includes the use of hazardous chemicals and has no constant analysis capability.

Biochemical Oxygen Demand (BOD) 5 Day Application Note

by MANTECH INC.     based in Guelph, ONTARIO (CANADA)

The MANTECH PC-BOD is ideally suited for 5 day BOD analysis. Attached is an application note to illustrate the performance and trust for this important regulatory parameter.

Real-time In-situ Effluent Monitoring

by Chelsea Technologies Group     based in West Molesey, UNITED KINGDOM

The UviLux BOD Indicator enables in-situ, real-time, reporting of BOD within both natural water systems and water processing plants. The monitor detects fluorescent proteins that are inherent within sewage and slurry and provides an output in BOD equivalent units. The principle behind the measurement is the excitation of Tryptophan-like fluorescence within UV wavelength band, which has been shown to correlate with both BOD and bacterial contamination. With complete flexibility of deployment methodology, the UviLux BOD Indicator can be applied to both water supply and water recovery processing plants. For water supply processing, the UviLux BOD Indicator can be applied at the front end to the water intake to provide alarm of any contaminated water entering the plant. Applications within Waste Water Treatment Works can include monitoring of effluent levels at the final outflow point (into rivers and coastal areas) as well as the primary, secondary & tertiary stages, the data potentially feeding into energy saving systems to optimise process performances. The CTG UviLux BOD Indicator in-situ fluorometer can also be used within pipe and channel networks to test for incidences of black water and grey water cross-over.

Water quality monitoring for textile industry

by Real Tech Inc.     based in Whitby, ONTARIO (CANADA)

Wastewater from a textile facility contains a variety of dyes and organic chemicals from the manufacturing processes that are often difficult to treat. Spectral analysis is well suited for monitoring waste streams to identify problematic dyes prior to treatment. Continuous monitoring of effluent wastewater for BOD and COD helps to ensure effective treatment and quality of effluent to ensure regulatory goals are met prior to discharge.

Water quality monitoring for brewery industry

by Real Tech Inc.     based in Whitby, ONTARIO (CANADA)

Monitoring process streams and waste streams continuously in a brew house can provide many benefits to operations. Monitoring product in process for color or concentration provides consistency and quality measures. Product loss can be quantified by monitoring waste streams. Processes can be improved to increase efficiency and minimize effluent waste. Effluent waste streams can also be monitored for organic loading with BOD and COD correlations to ensure compliance for discharge.

Wastewater solutions for the industrial effluent pollution management

by Real Tech Inc.     based in Whitby, ONTARIO (CANADA)

Problem: Industrial manufacturers face stringent regulations for discharging wastewater to the environment and municipal sewer systems. Biochemical Oxygen Demand (BOD) is a primary concern for many discharge limits, as wastewaters high in BOD can have adverse impacts on the aquatic environments by leading to oxygen depletion. In some cases, as a means to supplement BOD, it is also desirable to monitor chemical oxygen demand (COD) of industrial effluents. Both of these tests, are time and labour intensive reducing the frequency at which they can be measured for a given effluent.

Need help finding the right suppliers?

Let the XPRTs do the work for you