Only show results available in Virginia? Ok

bod test Applications

  • Real-time In-situ Effluent Monitoring

    The UviLux BOD Indicator enables in-situ, real-time, reporting of BOD within both natural water systems and water processing plants. The monitor detects fluorescent proteins that are inherent within sewage and slurry and provides an output in BOD equivalent units. The principle behind the measurement is the excitation of Tryptophan-like fluorescence within UV wavelength band, which has been shown to correlate with both BOD and bacterial contamination. With complete flexibility of deployment methodology, the UviLux BOD Indicator can be applied to both water supply and water recovery processing plants. For water supply processing, the UviLux BOD Indicator can be applied at the front end to the water intake to provide alarm of any contaminated water entering the plant. Applications within Waste Water Treatment Works can include monitoring of effluent levels at the final outflow point (into rivers and coastal areas) as well as the primary, secondary & tertiary stages, the data potentially feeding into energy saving systems to optimise process performances. The CTG UviLux BOD Indicator in-situ fluorometer can also be used within pipe and channel networks to test for incidences of black water and grey water cross-over.

    By Chelsea Technologies Group based in West Molesey, UNITED KINGDOM.

  • Wastewater solutions for the industrial effluent pollution management

    Problem: Industrial manufacturers face stringent regulations for discharging wastewater to the environment and municipal sewer systems. Biochemical Oxygen Demand (BOD) is a primary concern for many discharge limits, as wastewaters high in BOD can have adverse impacts on the aquatic environments by leading to oxygen depletion. In some cases, as a means to supplement BOD, it is also desirable to monitor chemical oxygen demand (COD) of industrial effluents. Both of these tests, are time and labour intensive reducing the frequency at which they can be measured for a given effluent.

    By Real Tech Inc. based in Whitby, ONTARIO (CANADA).

  • Waste water respirometry solutions for toxicity based consents

    Water companies, water authorities or publicly-owned treatment works (POTW) need to have some knowledge of the composition of the wastes they it receive. In addition to testing for ammonia and BOD or COD levels, treatment works can license industrial discharges on the basis of concentrations of some of the known toxic compounds. However, it is recognised that very many non-regulated toxic materials still enter the treatment works and reduce the efficiency of biodegradation, and may cause toxic shock. The way is now open for more widespread use of direct toxicity tests as a basis for toxicity-based consents. Samples of the industrial effluent are collected at source, for testing on the actual bacteria of the receiving activated sludge. The tests used are the Respiration Inhibition Test and the Nitrification Inhibition Test. Note that this approach mirrors that of the regulators of discharges to receiving waters, who are now using direct toxicity tests (DTA) or whole effluent toxicity tests (WET tests) in order to protect the receiving environment.

    By Strathkelvin Instruments Ltd. based in North Lanarkshire, UNITED KINGDOM.

  • Headworks Odor and Corrosion Control Using Hydrogen Peroxide

    Hydrogen Peroxide typically controls odors and corrosion at treatment plant headworks by direct oxidation of hydrogen sulfide (H2S) within the wastewater. In the direct oxidation mode, H2O2 is applied to the wastewater 5-30 minutes prior to the point where the odors are being released, generally as the wastewater line enters the plant boundary. The efficiency of hydrogen peroxide treatment depends upon the available reaction time, the level of iron in the wastewater (reaction catalyst), wastewater pH and temperature, and the initial and target levels of H2S odor. Under optimal conditions, effective dose ratios are 1.2 - 1.5 parts H2O2 per part dissolved sulfide, and can be reliably estimated through beaker tests. H2O2 + H2S → S0 + 2H2O Frequently, control of odors through the primary clarifiers is wanted. In such case, the mechanism of control is both direct oxidation of H2S (as it rises from the solids blanket), and prevention of odor generation (by supplying dissolved oxygen). Control is typically achieved with a booster dose of 1-2 mg/L H2O2 added to the clarifier influent. Higher doses or alternate modes of addition may be required in cases where: 1) hydraulic retention times are > 2-3 hours; 2) solids blanket depths are > 1-2 feet; 3) soluble BOD levels are > 200-300 mg/L; or 4) waste activated sludge is co-settled with the primary solids. 2H2O2 → O2 + 2H2O

    By USP Technologies based in Atlanta, GEORGIA (US) (USA).

Need help finding the right suppliers? Try XPRT Sourcing. Let the XPRTs do the work for you