carbon monoxide measurement Applications

4 Results found
Only show results available in Virginia?
OK
  • Keyword: carbon monoxide measurement ×

Gas monitoring instruments and systems for process NOx measurement

by Gasmet Technologies Oy     based in Helsinki, FINLAND

Nitric acid HNO3 is an important intermediate reagent for production of several important end products, such as fertilizers, explosives, dyestuffs/pigments, pesticides, pharmaceuticals, photographic materials, plastics, and synthetic fibers. At nitric acid manufacturing plants, the Gasmet™ FTIR Gas Analyzer can be used to measure several gaseous components from the process stream for purposes of process control. A single system can be used to measure the high levels of nitrogen monoxide NO and nitrogen dioxide NO2, as well as water vapor H2O, nitrous oxide N2O, carbon monoxide CO, carbon dioxide CO2 and ammonia NH3. The fixed installation products for these purposes are the Gasmet™ CEM II measurement system, and the Gasmet™ FCX Gas Analyzers, both of which utilize the FTIR measurement technique for simultaneous multicomponent analysis of the sample gas.

CO2 / CO Monitoring in Air

by Unisearch Associates Inc.     based in Concord, ONTARIO (CANADA)

CO (carbon monoxide) and CO2 (carbon dioxide) are generally measured to ensure process control. CO2 is the desired product and CO is undesired in combustion since it will explode in high enough concentrations. CO2 and CO concentrations can also be used to determine other process-specific efficiencies. Continuous emissions monitoring equipment that can be calibrated as a CO and CO2 analyzer is thereby essential for process control.

Fluoride emissions monitoring in aluminum smelters

by Gasmet Technologies Oy     based in Helsinki, FINLAND

Production of aluminum from its ores at aluminum smelters results in carbon dioxide CO2, carbon monoxide CO, sulfur dioxide SO2, and hydrogen fluoride HF gas emissions during the electrolytic process phase to the atmosphere. The gas emissions need to be monitored. Typically the smelters have emission limit values (ELVs) for sulfur dioxide and hydrogen fluoride emissions. These emissions should be measured accurately and with good precision, to ensure the smelter does not exceed its emission limit values. In addition several fluoride compounds may be produced in the electrolytic bath in the event of an oxygen shortage. These compounds include carbon tetrafluoride CF4, hexafluoroethane C2F6, sulfur hexafluoride SF6, and silicon tetrafluoride SiF4. These additional emission components are problematic, as they have high Global Warming Potential (GWP) values. The GWP is a relative measure designed to demonstrate how much heat a greenhouse gas (GHG) traps in the atmosphere. Emission of one kilogram of carbon tetrafluoride into the atmosphere today has the potential of heating the atmosphere as much as 7,000 kilograms of carbon dioxide over the next 100 years.

Gas Sensing for Gasification

by Edinburgh Instruments Ltd     based in Livingston, UNITED KINGDOM

Syngas (short for synthetic gas) can be burnt and used as a fuel source, the main constituents of syngas are Carbon Monoxide (CO) and Hydrogen (H), which amount for around 85% of Syngas, and it is produced by a process called Gasification. Gasification starts with a base material which can originate from a wide variety of materials for example wood chips and pellets, plastics, municipal solid waste, sewage, waste crops, and fossil fuels such as coal. During Gasification the base material is reacted at high temperature without combustion with controlled amounts of oxygen (O) or steam. The composition of the base material combined with the amount of oxygen and heat used in the process affects the composition of the resultant SynGas, in which the CO can vary between around 20 and 60%. In addition, large amounts of H and CO are also formed. The measurement of CO is therefore an important feature in the production of SynGas.

Need help finding the right suppliers?

Let the XPRTs do the work for you