Only show results available in Virginia? Ok

h2s control Applications

  • Air Pollution Control Solution for the Hydrogen Sulfide (H2S)

    Hydrogen Sulfide is lethal if released. Macrotek is a leader in developing advanced technologies for optimum removal and treatment. Our experience includes many installations using caustic, oxidizing reagents, catalytic and forced oxidation combination, and biofilters. Each application is unique and requires custom solutions.

    By Macrotek Inc. based in Markham, ONTARIO (CANADA).

  • Premium

    Waste water treatment plants Personnel Safety & H2S filter management

    Context & Challenges Globally, the wastewater treatment is the first public health issue. Urban development leads to urbanization near waste water treatment plant and extension of sewerage network. These aspects induce to an augmentation of sulfur compounds (H2S, mercaptans and sulfides) which are very corrosive, odorant and toxic. To monitor this compounds online CHROMATOTEC® offers high meteorological solutions. As a result of the confinement of the waste water stations, toxic components such as H2S and Methylmercaptan increased. Safety of employees on such working sites has therefore become of major problem. To fight this hazardous pollution, air filtering systems have been installed. For the station managers, personal safety coupled with the need for constant air quality control and filter change has been a heavy task.

    By Chromatotec Group based in Val de Virvée, FRANCE.

  • Premium

    Precision moisture analysis instruments for Hydrogen Sulfide (H2S) monitoring for landfills

    Trusted odor detection at parts-per-billion (ppb) levels. If you operate a landfill, you know that it takes constant vigilance to keep your community happy. Monitoring for hydrogen sulfide odor is no exception. When planning your strategy for hydrogen sulfide odor control, be proactive. Be prepared. Trust Jerome to give you the data you need to make the right decisions.

    By Arizona Instrument LLC based in Chandler, ARIZONA (USA).

  • Premium

    Waste water treatment plants Air quality control by TRS MEDOR

    Context & Challenges Globally, the wastewater treatment is the first public health issue. Urban development leads to urbanization near waste water treatment plant and extension of sewerage network. These aspects induce to an augmentation of sulfur compounds (H2S, mercaptans and sulfides) which are very corrosive, odorant and toxic. To monitor this compounds online CHROMATOTEC® offers high meteorological solutions. At the entrance of the waste water plants, where the waste water arrives, strongly smelling and polluted air is captured and neutralised by a chemical cleaning process called ‘’Stripping’’. The correct amount of chemical products needed to neutralise the polluted air has to be calculated.

    By Chromatotec Group based in Val de Virvée, FRANCE.

  • Dust collection and odor control in waste management sites

    Th turn key plant is composed by three different wet stages. The first stage is a venturi jet scrubber to collect dust and particles, then the second and third stages are deputed to absorb bad smells, such as H2S, Ammonia and Ammines. The absorption takes place thanks to the injection of chemicals (such as Sulphuric Acid, Sodium Hypochlorite and Sodium hydroxide.

    By F.G.M. engineering srl based in Santa Croce sull`Arno, ITALY.

  • Gravity Main Sulfide Odor Control with Hydrogen Peroxide

    Gravity main sewer systems include major trunk lines and the tributaries that feed them. Hydrogen sulfide (H2S) odor builds up in the collections system as the flows collect from upstream reaches and become larger, deeper and more septic (oxygen depleted) in the downstream reaches more near to the wastewater treatment plant. In general, most of the more significant hydrogen sulfide odor and corrosion control problems occur in the major trunk systems segments conveying flow to the plant. Therefore, selection of sulfide treatment for gravity systems has several options depending mainly on: Duration of control required Degree of septicity (oxygen depletion) Location of target control points or "hot spots" Location of available dosing points upstream of "hot spots" Availability of civil infrastructure and utilities Sensitivity to hazardous chemicals

    By USP Technologies based in Atlanta, GEORGIA (US) (USA).

  • Headworks Odor and Corrosion Control Using Hydrogen Peroxide

    Hydrogen Peroxide typically controls odors and corrosion at treatment plant headworks by direct oxidation of hydrogen sulfide (H2S) within the wastewater. In the direct oxidation mode, H2O2 is applied to the wastewater 5-30 minutes prior to the point where the odors are being released, generally as the wastewater line enters the plant boundary. The efficiency of hydrogen peroxide treatment depends upon the available reaction time, the level of iron in the wastewater (reaction catalyst), wastewater pH and temperature, and the initial and target levels of H2S odor. Under optimal conditions, effective dose ratios are 1.2 - 1.5 parts H2O2 per part dissolved sulfide, and can be reliably estimated through beaker tests. H2O2 + H2S → S0 + 2H2O Frequently, control of odors through the primary clarifiers is wanted. In such case, the mechanism of control is both direct oxidation of H2S (as it rises from the solids blanket), and prevention of odor generation (by supplying dissolved oxygen). Control is typically achieved with a booster dose of 1-2 mg/L H2O2 added to the clarifier influent. Higher doses or alternate modes of addition may be required in cases where: 1) hydraulic retention times are > 2-3 hours; 2) solids blanket depths are > 1-2 feet; 3) soluble BOD levels are > 200-300 mg/L; or 4) waste activated sludge is co-settled with the primary solids. 2H2O2 → O2 + 2H2O

    By USP Technologies based in Atlanta, GEORGIA (US) (USA).

  • Force Main Systems Sulfide Odor Control with Hydrogen Peroxide

    Force main systems are typically high sulfide odor generators due to septicity conditions related to full pipe flow and a greater anaerobic slime layer (biofilm) thickness. Primary factors that influence sulfide loading generation in a force main include sewage temperature, BOD, retention time, pipe size and flow. Gaseous hydrogen sulfide (H2S) release at the force main discharge is usually the main concern related to odor and corrosion control needs; however, corrosion problems within the pipe can be of a concern (e.g. "crown cutting") at locations where air pockets can lead to concentrated H2S gas build up. Some basic considerations for assessing an appropriate sulfide odor treatment method for force main systems include: Retention time / duration of control Pump station type / cycling (e.g. vfd; start/stop, etc). Force main injection tap points, if any (e.g. air relief valves) Existence of intermediate re-lift stations or in series pump stations Manifold force main systems

    By USP Technologies based in Atlanta, GEORGIA (US) (USA).

  • Premium

    Waste water treatment plants Air quality control by TRS MEDOR Online Odor Monitoring

    ontext & Challenges Globally, the wastewater treatment is the first public health issue. Urban development leads to urbanization near waste water treatment plant and extension of sewerage network. These aspects induce to an augmentation of sulfur compounds (H2S, mercaptans and sulfides) which are very corrosive, odorant and toxic. To monitor this compounds online CHROMATOTEC® offers high meteorological solutions. Odors are very distinct air contaminants as they generate nuisances. The factors playing a role in the determination of odor annoyance are: odor concentration and intensity, frequency, appreciation, duration, synergy and location. CHROMATOTEC® proposes an automatic solution to well identify the origin and the level of odors.

    By Chromatotec Group based in Val de Virvée, FRANCE.

  • Industrial wastewater treatment for industries

    MIOX is the lowest cost supplier of chlorine for disinfection and oxidation of wastewater prior to discharge. Mixed Oxidant Solution (MOS) chemistry is more effective at biofilm control, Biochemical and Chemical oxygen demand removal (BOD/COD), breakpoint chlorination of ammonia and hydrogen sulfide (H2S) removal.

    By MIOX Corporation - Johnson Matthey`s Water Technologies based in Albuquerque, NEW MEXICO (USA).

  • Premium

    Ultraviolet disinfection systems for the well injection water & SRB reduction

    Microorganism and bacteria control is increasingly an important topic of discussion in the oil and gas industry.  Inadequate disinfection and treatment of well injection water and stimulation fluids, used in the recovery of oil and gas has been proven to lead to a host of negative consequences, including: - Souring the well with hydrogen sulphide gas H2S, Microbiological induced corrosion, Loss of fluid stability during injection., Plugging of the well, Damage of equipment and components (e.g. RO membranes, filters)

    By atg UV Technology based in Wigan, UNITED KINGDOM.

  • Activated carbons for air and gas industries

    Carbon Activated Corporation supplies a complete line of high-capacity activated carbon for vapor phase and air applications such as odor control in municipal waste-water facilities, landfills and refineries, SVE (soil vapor extraction) projects and many other vapor related applications. We manufacture specialized carbon both impregnated and non-impregnated for applications such as H2S removal and the removal of any time of noxious gases.

    By Carbon Activated Corporation based in Compton, CALIFORNIA (USA).

  • Activated Carbon Filtration for the Air Filtration Industry

    General Carbon carries a complete line of activated carbon made from coal, coconut shell and wood for most vapor phase and air applications. These include impregnated carbons for specialty applications and high capacity non-impregnated carbon for H2S control. In addition, our specialty medias are ideal for the treatment of many contaminants that activated carbon may struggle with. Orders of bulk activated carbon are also acceptable as we have been a major supplier of activated carbon since 1958.

    By General Carbon Corp. based in Paterson, NEW JERSEY (USA).

  • Biogas to Elecricity

    The range of supply of biogas to electricity solutions is from 10 kW to 1 MW. All the components of the solution are provided with matching capacities. It comprises the biogas digester system of the desired capacity, gas storage, biogas cleaning system to get rid of H2S from the gas, and the biogas genset. In the digester system, one may have a pre-digester or a feed mixing chamber or both. On the post-digester side, liquid from the slurry is separated and is recycled for feed preparation. It reduces the overall fresh water demand of the scheme. The digester itself may be temperature controlled and the input for the same could be given from heat recovery of the genset or from a solar heating system or from any other heat source as the case may be.

    By Kirloskar Integrated Technologies Limited based in Kothrud, INDIA.

  • Agricultural, Storm and Highway Runoff

    The ability to collect useful data about sediment transport and other pollutants closely coupled to SSC (such as nutrients, e-coli, phosphates and nitrates) is dependent on the timing and frequency of manual grab samples during run-off events. Most sediment and pollutant is transported during a small number of storm events which are infrequent and unpredictable. When they do occur, trained personnel or the proper equipment may not be available to collect grab samples. An automated pump sampler can eliminate the need to sample manually, but for the expense of a rechargeable power system, the autosampler, and possibly a datalogger and a typical turbidity probe, you’re no better off. With an automated pump sampler driven by the DTS-12 digital turbidity sensor and controlled by the Axiom H2 datalogger, you obtain a better understanding of the water’s quality, while taking a minimum number of samples, reducing site visits and saving lab analysis costs.

    By FTS based in Victoria, BRITISH COLUMBIA (CANADA).

  • Sulfide Oxidation with Hydrogen Peroxide (H2O2)

    Sulfide Odor Control Sulfide is found throughout the environment as a result of both natural and industrial processes. Most sulfide found in nature was produced biologically (under anaerobic conditions) and occurs as free hydrogen sulfide (H2S) - characterized by its rotten egg odor. We are most likely to encounter biogenic H2S in sour groundwaters, swamps and marshes, natural gas deposits, and sewage collection/treatment systems. Manmade sources of H2S typically occur as a result of natural materials containing sulfur (e.g., coal, gas and oil) being refined into industrial products. For a variety of reasons - aesthetics (odor control), health (toxicity), ecological (oxygen depletion in receiving waters), and economic (corrosion of equipment and infrastructure) - sulfide laden wastewaters must be handled carefully and remediated before they can be released to the environment. Typical discharge limits for sulfide are < 1 mg/L. Sulfide Treatment Alternatives There are dozens of alternatives for treating sulfide laden waters, ranging from simple air stripping (for the low levels present in groundwaters) to elaborate sulfur recovery plants (used to treat several tons per day at refineries and coal burning power plants). There are processes based on biology (using compost filters, scrubbing media, or inhibition/disinfection), chemistry (oxidation, precipitation, absorption, and combination), and physics (adsorption, volatilization, and incineration). Each process occupies a niche which is often defined by the scale and continuity of treatment, whether the sulfide is in solution or is a gas, the concentration of sulfide involved, and the disposition of the sulfide containing medium. However, for reasons relating to convenience and flexibility, chemical oxidation (using hydrogen peroxide) continues to grow in its scope of application. Treatment with Hydrogen Peroxide While other peroxygens such as permonosulfuric (Caro’s) acid, peracetic acid, and persulfates will oxidize sulfide, their use for this application is overkill. Hydrogen peroxide (H2O2) is considerably simpler and more cost-effective. H2O2 may control sulfides in two ways, depending on the application: Prevention - by providing dissolved oxygen which inhibits the septic conditions which lead to biological sulfide formation; and Destruction - by oxidizing sulfide to elemental sulfur or sulfate ion.

    By USP Technologies based in Atlanta, GEORGIA (US) (USA).

Need help finding the right suppliers? Try XPRT Sourcing. Let the XPRTs do the work for you