Only show results available in Virginia? Ok

hydrogen sulfide from water removal Applications

  • Premium

    Hydrogen sulfide removal in sludge management

    In the treatment of sanitary sewage, bio-solids are separated from the liquid. These bio-solids are concentrated and dewatered using filter presses, centrifuges, or other devices. Hydrogen sulfide and mercaptans are released during the dewatering operation.  Carus permanganates react quickly and produce immediate results for hydrogen sulfide removal in order to provide a safe, odor free environment and minimize corrosion due to sulfides.

    By Carus Corporation based in Peru, ILLINOIS (USA).

  • Odor Scrubbers Applications with Hydrogen Peroxide

    Hydrogen Peroxide as a Replacement for Sodium Hypochlorite Hydrogen peroxide may be used in both mist scrubbers and packed tower scrubbers as a replacement for sodium hypochlorite (bleach). Like bleach, the process involves two concurrent mechanisms: 1) absorption of the odors (H2S) into the alkaline scrubbing solution; and 2) oxidation of the absorbed sulfide in solution. Step 1: H2S + NaOH → NaSH + H2O Step 2: 4H2O2 + H2S → H2SO4 + 4H2O Typical dose ratios are 5 parts H2O2 per part H2S or, when used in place of bleach, one gallon 50% H2O2 for every 10 gallons of 15% sodium hypochlorite (NaOCl). This generally translates into a break-even cost scenario. Sufficient caustic soda (NaOH) is added to maintain a pH of 10.0 - 10.5 in the scrubbing solution. There is also in practice a process which uses H2O2 in series with bleach to scrub composting odors. This process relies on a series of three packed tower scrubbers: the first is a pH neutral water wash (to remove ammonia and amine odors); the second uses a conventional caustic/bleach solution in which the bleach is purposely overdosed (to oxidize the complex organic sulfur odors); and the third uses a caustic/H2O2 solution (to remove the unreacted chlorine vapors carried over from the second stage). H2O2 + HOCl → HCl + H2O + O2 Typical dose ratios are 0.5 parts H2O2 per part hypochlorite (OCl-), with sufficient caustic soda (NaOH) added to maintain a pH of 8.5 in the scrubbing solution.

    By USP Technologies based in Atlanta, GEORGIA (US) (USA).

  • Filamentous Bulking Control with Hydrogen Peroxide

    Basis of Control with Hydrogen Peroxide Hydrogen peroxide may be used to correct a serious filamentous bulking situation or, preferably, to prevent one from occurring until adjustments can be made to remove the cause. When applied to the return activated sludge, hydrogen peroxide supplies dissolved oxygen which helps restore the microbial activity necessary for effective operation, while selectively oxidizing the filaments which retard settling. The effective dose of hydrogen peroxide is a function of time and concentration, and varies from plant to plant. To correct a serious bulking problem, immediate results may be obtained by adding 100 - 200 mg/L H2O2 to the biosolids recycle line. Once control of bulking is obtained, the dose may be reduced to 25 - 50 mg/L H2O2 to prevent re-occurrence. Practical Considerations Filamentous bulking of municipal activated sludge is not a normal occurrence, and suggests more fundamental problems may be at work (e.g., low dissolved oxygen, high sulfide input, heavy organic loading, nutrient imbalance, improper sludge age, or rapid changes in influent characteristics). Consequently, the use of chemicals such as hydrogen peroxide to control bulking should be pursued in concurrently with more fundamental corrective measures.

    By USP Technologies based in Atlanta, GEORGIA (US) (USA).

  • PLAZKAT systems for treatment (removal, neutralisation) of smelly substances from the air

    PLAZKAT Aero units are used to neutralize bad smells from waste treatment facilities, caused by the presence of sulfur and nitrogen compounds - hydrogen sulfide, mercaptans, and ammonia. Urban waste treatment facilities, local waste treatment systems in factories, pumping stations in waste water treatment systems are characterized by a strong smell of sulfur and nitric compounds.

    By Plasma Air Systems Corporation based in Harju Maakond, ESTONIA.

  • Applications and Air Pollutants Removed in Wastewater Treatment Operations

    Removing hydrogen sulfide, mercaptans and other organosulfur compounds from wastewater treatment plant odor causing processes and areas. Stripping of ammonia and other VOC compounds.

    By Bionomic Industries Inc. based in Mahwah, NEW JERSEY (USA).

  • Applications and Air Pollutants Removed in the Biomass Industry

    Flue gas particulate and acid gases from biomass and bagasse boilers. Removal of ethanol, CO2 scrubbers and yeast cells from fermenters.  Removal of ash particulate, tars, acid gases and ammonia from steam reformers, gasifiers, pyrolosis units and cooling of syngas streams to acceptable limits to enable use as a fuel source for power generation or as a feedstock for chemical products. For tar removal, combination technologies can be used including oil based scrubbing solutions to reduce waste water generation. Ethanol and yeast cell removal from fermenter off-gases. Methanol from processing operations. Hydrogen sulfide removal on landfill, digester and producer gases with regenerable chemistries. Odor control for biomass storage facilities including carbon monoxide removal in wood chip storage areas. 

    By Bionomic Industries Inc. based in Mahwah, NEW JERSEY (USA).

  • Gas/Liquid and liquid/liquid mixing for air stripping applications

    The growing demand placed on the world’s water, in combination with more stringent water quality regulations, have placed unprecedented demands to provide safe, reliable and aesthetically pleasing drinking water. Air stripping is an effective way of removing volatile organic chemicals (VOCs) from contaminated water and is commonly used for this application. Air stripping systems mix air with a water supply with the goal to generate the largest possible air-water contact area so that VOCs and dissolved gases, such as radon and hydrogen sulfide, will move from the water to the air. In addition to removing VOCs, air stripping is primarily used for removing oxidizing contaminants such as iron and manganese, improving taste, or removing odor. Air stripping is an EPA Best Available Technology (BAT) for some VOCs including benzene, toluene, xylene, tri/tetrachloroethylene, trihalomethanes, vinyl chloride and many others.

    By Mazzei Injector Company, LLC based in Bakersfield, CALIFORNIA (USA).

Need help finding the right suppliers? Try XPRT Sourcing. Let the XPRTs do the work for you