Only show results available in Virginia? Ok

natural gas filter Applications

  • High performance solid-liquid separation system for deepwell industry

    Deepwell facilities for the disposal of plant waste streams often employ nominally rated spray spun elements, bags, diatomaceous earth filters, and various other types of conventional filtration technology. These labor intensive systems provide protection of the well from occlusion by suspended particle matter, albeit often with high operational cost and limited assurance of reliable fluid quality. The ongoing challenge facing a deepwell system is the requirement that the formation into which the waste is being pumped must maintain its porous nature in order to operate effectively. Therefore, reliable, effective filtration to capture particles with the potential to plug the formation is critical. Pentair Porous Media’s proven advanced separation technologies have been employed in deepwell disposal systems to enhance system reliability, assure well integrity and lower operating costs and system maintenance.

    By Pentair Filtration Solutions, LLC based in Conroe, TEXAS (USA).

  • Cloud Point of Diesel Fuel #3074

    The Cloud Point of a diesel fuel is the temperature below which wax forms giving the fuel a cloudy appearance. This parameter is an important property of the fuel since the presence of solidified waxes can clog filters and negatively impact engine performance. The traditional laboratory methods for the measurement of Cloud Point are optical in nature, but rely on cooling the fuel for the wax formation to occur. Guided Wave’s process analyzers can measure compositional changes in the fuel that will be directly related to the wax formation and hence the Cloud Point. This note will discuss the use of Guided Wave hardware and software tools for the measurement of the Cloud Point of diesel fuel using fiber optic-based, near-infrared (NIR) spectroscopy. NIR can be applied in real time directly in process.

    By Guided Wave Inc, based in Rancho Cordova, CALIFORNIA (USA).

  • Sulfide Oxidation with Hydrogen Peroxide (H2O2)

    Sulfide Odor Control Sulfide is found throughout the environment as a result of both natural and industrial processes. Most sulfide found in nature was produced biologically (under anaerobic conditions) and occurs as free hydrogen sulfide (H2S) - characterized by its rotten egg odor. We are most likely to encounter biogenic H2S in sour groundwaters, swamps and marshes, natural gas deposits, and sewage collection/treatment systems. Manmade sources of H2S typically occur as a result of natural materials containing sulfur (e.g., coal, gas and oil) being refined into industrial products. For a variety of reasons - aesthetics (odor control), health (toxicity), ecological (oxygen depletion in receiving waters), and economic (corrosion of equipment and infrastructure) - sulfide laden wastewaters must be handled carefully and remediated before they can be released to the environment. Typical discharge limits for sulfide are < 1 mg/L. Sulfide Treatment Alternatives There are dozens of alternatives for treating sulfide laden waters, ranging from simple air stripping (for the low levels present in groundwaters) to elaborate sulfur recovery plants (used to treat several tons per day at refineries and coal burning power plants). There are processes based on biology (using compost filters, scrubbing media, or inhibition/disinfection), chemistry (oxidation, precipitation, absorption, and combination), and physics (adsorption, volatilization, and incineration). Each process occupies a niche which is often defined by the scale and continuity of treatment, whether the sulfide is in solution or is a gas, the concentration of sulfide involved, and the disposition of the sulfide containing medium. However, for reasons relating to convenience and flexibility, chemical oxidation (using hydrogen peroxide) continues to grow in its scope of application. Treatment with Hydrogen Peroxide While other peroxygens such as permonosulfuric (Caro’s) acid, peracetic acid, and persulfates will oxidize sulfide, their use for this application is overkill. Hydrogen peroxide (H2O2) is considerably simpler and more cost-effective. H2O2 may control sulfides in two ways, depending on the application: Prevention - by providing dissolved oxygen which inhibits the septic conditions which lead to biological sulfide formation; and Destruction - by oxidizing sulfide to elemental sulfur or sulfate ion.

    By USP Technologies based in Atlanta, GEORGIA (US) (USA).

Need help finding the right suppliers? Try XPRT Sourcing. Let the XPRTs do the work for you