Only show results available in Virginia? Ok

organic waste biodegradation Applications

  • Energy and Fuels from Municipal Solid Waste (MSW)

    Municipal Solid Waste (MSW), which includes household waste, is the residual waste put into a black bin bag or wheelie bin. MSW contains a mixture of recyclable, organic, inorganic and biodegradable materials. We recover as many recyclable materials as possible before drying and shredding the remainder to make a Refuse Derived Fuel (RDF) for the process. Our energy from waste process, Gasplasma®, transforms the RDF into a clean hydrogen-rich synthesis gas (syngas).

    By Advanced Plasma Power (APP) based in Swindon, UNITED KINGDOM.

  • Membrane filtration systems for biotechnology and pharmaceutical industry

    GEA Filtration is experienced in processing a wide range of products on a commercial basis and by testing products at the plant site or in our pilot plant testing facility. Definition of the Industrial Biotech and Environmental Biotech Sector. This sector uses living organisms to manufacture a variety of products that result in the reduction of pollution, resource consumption and waste. Typical products include bioethanol, industrial enzymes, biological fuel cells, enzymes for bioremediation, biodegradable plastics and much more.

    By GEA Filtration based in Hudson, WISCONSIN (USA).

  • Wastewater treatment solutions for anaerobic sludge digestion sector

    Anaerobic digestion is a series of processes in which microorganisms break down biodegradable material in the absence of oxygen, used for industrial or domestic purposes to manage waste and/or to release energy. It is widely used as part of the process to treat wastewater, like Upflow Anaerobic Sludge Blanket (UASB) reactors. As part of an integrated waste management system, anaerobic digestion reduces the emission of landfill gas into the atmosphere. Anaerobic digestion is widely used as a renewable energy source because the process produces a methane and carbon dioxide rich biogas suitable for energy production, helping to replace fossil fuels. The nutrient-rich digestate which is also produced can be used as fertilizer. The digestion process begins with bacterial hydrolysis of the input materials in order to break down insoluble organic polymers such as carbohydrates and make them available for other bacteria. Acidogenic bacteria then convert the sugars and amino acids into carbon dioxide, hydrogen, ammonia, and organic acids. Acetogenic bacteria then convert these resulting organic acids into acetic acid, along with additional ammonia, hydrogen, and carbon dioxide. Finally, methanogens convert these products to methane and carbon dioxide.

    By QM Environmental Services Ltd. based in The Hague, NETHERLANDS.

Need help finding the right suppliers? Try XPRT Sourcing. Let the XPRTs do the work for you