Only show results available in Virginia? Ok

organics testing Applications

  • Premium

    Measurement solution for organic vapour speciation

    Protea has deployed FTIR gas analysers in many projects requiring the monitoring of complex mixes of VOCs. In the chemical and pharmaceutical industry, scrubbers and carbon-bed abatement plants are typical installations where the use of Protea FTIR analysers and our chemometric expertise have proved valuable to plant operators. They prove an invaluable tool in process measurements and emissions monitoring. In the laboratory, Protea can deliver instruments with all the chemometric software and support to enable users to measure hundreds of gases.

    By Protea Limited based in Middlewich, UNITED KINGDOM.

  • Haze Monitoring

    The principle cause of regional and urban haze, or visibility impairment, is light extinction caused by fine particles, sulfates, organic and elemental carbon, nitrates and crustal matter. Particles between 0.1 and one micrometers in size are most effective at scattering light, in addition to being of greatest concern for human health.

    By Ecotech Pty Ltd based in Knoxfield, AUSTRALIA.

  • Environmental Monitoring

    Environmental monitoring is becoming more important every day in local, national and international policies, showing the environmental awareness demanded by society.

    This fact gives rise to an increase in the amount of legislation that obliges companies to law enforcement. Thus, the necessity of making more pollutants controls means high analysis expenses to the companies, which need to subcontract this service.

    Although applications in this area advance, there is still a clear demand to get new portable and versatile analysis systems for many different application fields such as pollution in environmental or waste waters, monitoring nutrients in agricultural or horticultural water as well as general process control in chemistry industry. Because of the number of enviromental analysis required, there is a need for screening and monitoring measurements of these compounds at contaminated areas.

    Traditional monitoring techniques are typically based on laboratory analysis of field-collected samples that require considerable effort and expense, and the sample may change before analysis. Moreover, the equipment currently available is too large and expensive and it cannot be made portable.Alternatively, microfluidic and electrochemical sensor technologies can contribute to the development of new portable monitoring systems, complementing standard analytical methods for different environmental monitoring applications.In this way, the decentralization and integration of all those typical analyses is the paramount importance in order to reduce cost, simplify the analytical process and make more accessible these technologies to end-users. The development of portable, robust, and accurate Lab-on-a-Chip systems to monitor priority compounds such as contaminants, explosives, chemical warfare agents, inorganic and organic ions is a demand of modern society. Portability allows analyses to be carried out outside of the laboratory, minimizing the risk of contaminating the sample and leading to a faster response time at a lower cost.

    Thus, MicruX solutions and technologies open the gate to develop portable and esay-handly Lab-on-a-Chip devices in order to improve pollutants in-situ analysis in a very economic and efficient way.

    By MicruX Technologies based in Oviedo, SPAIN.

  • Premium

    Oxygen monitoring from aerobic and anaerobic for biodegradation tests

    Biodegradation tests involve testing samples in response to various parameters: dilution, nutrient addition, pH, temperature, and others. The pattern of oxygen uptake in aerobic tests; nitrogen gas production in anoxic denitrification tests; methane production in methanogenic tests; hydrogen production during glycolysis; and carbon dioxide production during fermentation reactions gives a measure of the rate and extent of biodegradation of the organic constituents of the test sample.

    By Respirometer Systems and Applications, LLC based in Springdale, ARKANSAS (USA).

  • Premium

    Monitoring Raw Water Intake

    The Situation: Hydrocarbons in water intake used for municipal drinking water and desalination systems are commonly limited to 1 part per million. Problem: Naturally occurring organics in raw water are typically treated with chemicals. Total Organic Carbon (TOC) analyzers in the water treatment system can alert technicians when some type of organic material is present but cannot differentiate between natural organics, such as algae or leaves and hydrocarbons. Solution: A fluorescence monitor can be configured for sensitivity to hydrocarbons, with no significant response to other organics. The TD-4100XDC has the highest sensitivity to hydrocarbons in raw water, has a low cost of ownership, and can be modified with Teflon, Monel, and other corrosion resistant materials for sea water environments. Please visit http://www.oilinwatermonitors.com/applications-2/raw-water-intake for more information about this application.

    By Turner Designs Hydrocarbon Instruments, Inc. based in Fresno, CALIFORNIA (USA).

  • Premium

    Oxygen monitoring from aerobic and anaerobic for biomass activity tests

    Pulse-Flow respirometers can be used to assess biomass activity for aerobic and anaerobic reactions. In aerobic tests, cultures are combined with nutrients, trace minerals, and an organic substrate – such as acetic acid or ethanol. The maximum oxygen uptake rate reflects the amount of active biomass in the test culture.

    By Respirometer Systems and Applications, LLC based in Springdale, ARKANSAS (USA).

  • Continuous Instream Monitoring

    Turbidity in natural waters is recognized as an important indicator of its environmental health, and because it's a good surrogate for suspended sediment, monitoring turbidity has always been the "holy grail" for hydrologists. But because of earlier technology, "turbidity" has traditionally been a "bad word". The DTS-12 turbidity sensor is the first sensor to make turbidity monitoring practical, and no longer difficult, inaccurate, expensive, or labor-intensive. Turbidity is the cloudiness or murkiness of water caused by suspended organic or inorganic materials. Turbidity in natural waters is recognized as an important indicator of its environmental health.

    By FTS based in Victoria, BRITISH COLUMBIA (CANADA).

  • Premium

    Determination of TOC in stack

    PROBLEM: The industrial chimney's emissions of Volatile Organic Compounds (VOCs) are becoming issues of global importance and to have an accurate knowledge about how to test VOC turns into a strategic issue. VOC emissions are quantified and monitored according to standard EN 12619, using FID analyser which uses hydrogen and other reference gases in pressurized cylinder. Operators must then approach the sampling point, often placed several meters from the ground, climbing chimneys of industrial settlements with instruments and cylinders. Is it possible making this job easier and safer? SOLUTION: Using the Polaris FID analyser produced by Pollution Srl, Italy, it is possible to carry out the VOCs monitoring according to EN 12619 without lifting accessories and heavy weights typically involved with FID analyser. Polaris FID analyser complies with this standard regulation but what is really a breakthrough and cutting-edge, is the unmatched portability and the next generation technology

    By Pollution Srl based in Budrio, ITALY.

  • Microbial testing for metalworking fluids industry

    Microbial Contamination Results in Less than 5 minutes! Microbial growth in metalworking fluids presents a major problem. Storage tanks, recirculation lines, filters, and other equipment can become fouled through microbial proliferation and metabolic activity, which results in a myriad of problems. These problems include compromised product quality from microbially influenced corrosion (MIC), equipment and filter plugging, and health risks from bioaerosols. The best solution to these problems is early detection and treatment. Rapid detection is now possible through LuminUltra’s Quench-Gone Organic Modified (QGO-M) ATP test kit. This advanced test kit provides the user with an accurate measure of total microbial content in any metalworking fluid in less than 5 minutes.

    By LuminUltra Technologies Ltd. based in Fredericton, NEW BRUNSWICK (CANADA).

  • Digital Pathology

    Digital Pathology is an image-based information environment enabled by virtual microscopy. This involves imaging glass slides and saving and distributing their digital images for analysis, archiving and storage. The virtual microscopy slides are: •Scanned — using a microscope based scanning device that takes images of the whole slide via large scanning or stitching of smaller scans. This involves a motorized stage to scan the whole slide. Light source stability is important for scanning in order to prevent illumination variation across the whole scan. The X-Cite® exacte is commonly used in slide scanning systems. •Viewed — on a computer via viewing software •Managed — some of the slides have a barcode that is also scanned to enable archiving with patient information •Analysed — using image analysis tools and software, structures maybe automatically identified and quantified •Shared — digital pathology files may be shared over a network to gather additional expert opinion Digital pathology technology in no way replaces the expert eye and diagnosing power of a pathologist and a doctor. The only thing it saves is time to image the samples and also provides an efficient and organized way to archive the virtual microscopy slides for future consultations, record-keeping and disease comparison.

    By Excelitas Technologies based in Mississauga, ONTARIO (CANADA).

  • Water monitoring for laboratories

    Chemical purity of water is assessed for a wide variety of different chemicals depending on the type of water and applicable local legislation. 

    Chemical analysis of water can include testing for nitrogen compounds, dissolved heavy metals, and total and dissolved organic carbon.

    Common water monitoring applications include:

    • Determination of suspended solids in waterusing for example glass fiber filters.
    • Chemical analyses of for example heavy metals, dissolved organic carbons (DOC), and ions.
    • Microbiological analyses using membrane based microfiltration methods

    By GE Healthcare UK Limited based in Little Chalfont, UNITED KINGDOM.

  • Premium

    Oxygen Monitoring from Aerobic and Anaerobic for determination of biodegradation kinetics by respirometry

    Intrinsic kinetic tests involve adding relatively high concentrations of organic substrate to small concentration of acclimated microorganisms so that the COD/VSS ratio typically is greater than 10. Kinetic parameters are then determined by non-linear modeling using well-known relationships between biological growth and oxygen uptake.

    By Respirometer Systems and Applications, LLC based in Springdale, ARKANSAS (USA).

  • Premium

    Analysis of VOC compounds in water by Purge & Trap or dynamic headspace

    Context & Challenges Volatile organic compounds (VOC) can be dissolved in water. Sometimes water is polluted and to study contamination of VOC in finished drinking water, VOC must be measured. Chromatotec® Solutions Chromatotec® has developed a specific system for the measurement of VOC in water: a Purge & Trap system, the airmoPURGE. The analyzer is coupled with a degasing system allowing the extraction of dissolved gases. The complete system is based on: - 502.2 method from US EPA – “Volatile organic compounds in water by purge and trap capillary column gas chromatography with photoionization and electrolytic conductivity detectors in series – Revision 2.1”. - 524.2 method from US EPA – “Measurement of purgeable organic compounds in water by capillary column gas chromatography/mass spectrometry – Revision 4.0”.

    By Chromatotec Group based in Val de Virvée, FRANCE.

  • Premium

    Gas monitoring instruments and systems for stack testing according to EPA test method 320

    The United States Environmental Protection Agency (EPA) has two stack testing methods for FTIR gas analyzers. Method 320 is an FTIR method for measuring wide range of organic and inorganic pollutants. Method 321 is a specific version for measuring hydrogen chloride HCl at cement kilns producing Portland cement. These methods define a quality assurance and control processes for verifying the accuracy of the results. The requirements for analytical equipment and software are defined on 40 CFR Part 60 Appendix B Performance Specification 15. Gasmet™ Gas Analyzers and Calcmet™ software have been designed to take the requirements of the performance specification into account.

    By Gasmet Technologies Oy based in Helsinki, FINLAND.

  • Premium

    Seawater Biotoxicity monitoring to protect the coastal waters of Italy

    The recorded death of fish in the river that flows out of the industrial zone of Scarlino has created the need of the installation of a biological alarm system. The decision was made to work with an automatic system, iTOXcontrol created by microLAN-The Netherlands represented in Italy by Ecotox Lds, which uses marine bacteria. The system compares the values of the light emission from these organisms at the entrance and exit of the canal, generating alarms in the presence of toxic substances.

    By microLAN On-line Biomonitoring Systems based in Waalwijk, NETHERLANDS.

  • Premium

    Drinking water solutions for the TOC removal efficiency

    Problem: Organic matter (UV254/TOC) in drinking water can react with chlorine to form harmful disinfection by-products (DBPs). Some removal of TOC is achieved through the conventional drinking water treatment processes, while carbon absorption may be used to further enhance the removal of TOC prior to chlorine disinfection.

    By Real Tech Inc. based in Whitby, ONTARIO (CANADA).

  • Removal of organic compounds & toxity for wastewater treatment industry

    Federal and State regulatory agencies are increasingly requiring additional water quality testing and controls of the toxicity of discharges to receiving streams. Granular Activated Carbon (GAC) helps meet these pollution regulations. If organic chemicals have been identified as contributing to discharge toxicity, Calgon Carbon Corporation can work with facilities, and their engineering firms, to help meet stringent criteria associated with their NPDES permit. GAC can be employed as a cost-effective treatment for removal of organic compounds and toxicity. Even in situations where activated sludge treatment or powdered activated carbon is used for primary wastewater treatment, post treatment with GAC may be necessary to achieve toxicity compliance.

    By Calgon Carbon Corporation based in Pittsburgh, PENNSYLVANIA (USA).

  • Premium

    Measurement solution for total VOC via FTIR

    Total Volatile Organic Compounds (VOCs) is a common measurement required from industrial emissions. Commonly, a single measurement value is obtained through the use of a Flame Ionisation Detection (FID) analyser. The pyrolysis of the gas stream in a FID analyser allows it to make a measurement of the carbon content of the gas stream. FID analyser cannot indicate the relative abundances of different organic species in a gas stream and often have widely different responses for different gases. However, they are taken as the standard reference method for Total VOC emission measurements.

    By Protea Limited based in Middlewich, UNITED KINGDOM.

  • Premium

    Reduce biofilm formation

    In many industrial or professional applications where water is being stored, biofilm may grow. The growth of biofilm can damage the installations and reduce efficiency of the circuit. A biofilm can grow certain substrates which can be found in water. When temperatures are high, for example in cooling towers, a matrix of different micro- organisms such as bacteria, fungi, algae can grow very rapidly causing the formation of a biofilm on certain surfaces submerge in water. During the formation of this biofilm, certain micro organisms starts producing extra cellular polymeric substances (EPS) which reinforce the biofilm structure.

    By LG Sonic based in Zoetermeer, NETHERLANDS.

Need help finding the right suppliers? Try XPRT Sourcing. Let the XPRTs do the work for you