Only show results available in Virginia? Ok

sewage controller Applications

  • Odor Control in Sewage

    By The Definitive Deodorant Company based in North Kansas City, MISSOURI (USA).

  • Odor control for sewage pumping stations

    By Simple Solutions Dist. LLC based in West Milford, NEW JERSEY (USA).

  • Oxygen Generating Systems for Sewage Treatment

    Using Oxygen to Solve Waste Water Problems Lack of oxygen can cause inadequate purification or even anaerobic decomposition, as well as offensive odors. Injecting oxygen into sludge beds &/or piping allows you to: * Reduce nitrogen levels * Meet peak O2 demands * Have a back up to your aeration system * Pre-purify waste water * Control odors * Deter corrosion damage * Meet increased requirements regarding waste water purification

    By Oxygen Generating Systems Intl. (OGSI) based in North Tonawanda, NEW YORK (USA).

  • Premium

    Sewage Treatment Plants and Flow Sensors for Industry Application

    In sewage treatment plants, flow sensors are primarily installed for internal reasons. Ultrasonic flow meters are used to control the flow velocity in partially filled and fulfilled pressurized pipes, specific plant components, for leak detection or to control the use of additives. International regulations such as the EU-Directive for handling municipal waste water require flow metering for a continuous surveillance of waste water flow. Defective flow monitoring in sewage-treatment plants can therefore influence their operation, but there can also be legal or environmental consequences.


    By HydroVision GmbH based in Kaufbeuren, GERMANY.

  • Air control for wastewater treatment aeration

    Aeration Process Introduction: Waste Water Treatment removes impurities and contaminants from a com¬munity`s sewage utilizing a number of different processes and a variety of equipment. One of the processes is the use of surface aerated basins that use aerobic micro-organisms to remove 80 to 90% of organic matter in waste water. Oxygen concentration in the water basins is a critical factor to promote the optimum micro-organism growth rate needed to treat the water in the shortest amount of time. As a result, large compressors are used to force air through hundreds of air diffusion filters at the bottom of the aeration basins, providing a constant 24/7 supply of oxygen to the micro-organisms in the water.

    By Kurz Instruments, Inc. based in Monterey, CALIFORNIA (USA).

  • Premium

    Industrial air pollution control for the recycling and waste management

    Due to the continuous rise in the waste volumes worldwide it is essential constantly to seek alternatives to landfills and waste incineration: one suitable approach is bio-mechanical waste treatment. Apart from waste management, applications for air purification systems in this field range from soil remediation to sewage sludge drying in waste water treatment, as well as to the recycling of resources and their possible re-introduction.

  • Premium

    Pump station level controllers for pump staton call outs

    Town operators were plagued by high level alarm call outs at two new sewage lift stations. Read how they used Greyline`s hybrid ultrasonic level controllers with dual sensor capability to put an end to level alarms.

    By Greyline Instruments Inc. based in Long Sault, ONTARIO (CANADA).

  • Premium

    Differential level transmitter for VFD pump control & flow measurement

    An Ontario municipality deploys Portable flowmeters to solve flow rate discrepancies between sewage pump station effluent and lagoon influent flowmeters. Faced with suspension of construction permits due to flow rate uncertainty, the Township of North Glengarry called on Greyline Instruments to help troubleshoot two permanently installed flow meters.

    By Greyline Instruments Inc. based in Long Sault, ONTARIO (CANADA).

  • Force Main Systems Sulfide Odor Control with Hydrogen Peroxide

    Force main systems are typically high sulfide odor generators due to septicity conditions related to full pipe flow and a greater anaerobic slime layer (biofilm) thickness. Primary factors that influence sulfide loading generation in a force main include sewage temperature, BOD, retention time, pipe size and flow. Gaseous hydrogen sulfide (H2S) release at the force main discharge is usually the main concern related to odor and corrosion control needs; however, corrosion problems within the pipe can be of a concern (e.g. "crown cutting") at locations where air pockets can lead to concentrated H2S gas build up. Some basic considerations for assessing an appropriate sulfide odor treatment method for force main systems include: Retention time / duration of control Pump station type / cycling (e.g. vfd; start/stop, etc). Force main injection tap points, if any (e.g. air relief valves) Existence of intermediate re-lift stations or in series pump stations Manifold force main systems

    By USP Technologies based in Atlanta, GEORGIA (US) (USA).

  • Premium

    Gas Sensing for Gasification

    Syngas (short for synthetic gas) can be burnt and used as a fuel source, the main constituents of syngas are Carbon Monoxide (CO) and Hydrogen (H), which amount for around 85% of Syngas, and it is produced by a process called Gasification. Gasification starts with a base material which can originate from a wide variety of materials for example wood chips and pellets, plastics, municipal solid waste, sewage, waste crops, and fossil fuels such as coal. During Gasification the base material is reacted at high temperature without combustion with controlled amounts of oxygen (O) or steam. The composition of the base material combined with the amount of oxygen and heat used in the process affects the composition of the resultant SynGas, in which the CO can vary between around 20 and 60%. In addition, large amounts of H and CO are also formed. The measurement of CO is therefore an important feature in the production of SynGas.

    By Edinburgh Instruments Ltd based in Livingston, UNITED KINGDOM.

  • Sulfide Oxidation with Hydrogen Peroxide (H2O2)

    Sulfide Odor Control Sulfide is found throughout the environment as a result of both natural and industrial processes. Most sulfide found in nature was produced biologically (under anaerobic conditions) and occurs as free hydrogen sulfide (H2S) - characterized by its rotten egg odor. We are most likely to encounter biogenic H2S in sour groundwaters, swamps and marshes, natural gas deposits, and sewage collection/treatment systems. Manmade sources of H2S typically occur as a result of natural materials containing sulfur (e.g., coal, gas and oil) being refined into industrial products. For a variety of reasons - aesthetics (odor control), health (toxicity), ecological (oxygen depletion in receiving waters), and economic (corrosion of equipment and infrastructure) - sulfide laden wastewaters must be handled carefully and remediated before they can be released to the environment. Typical discharge limits for sulfide are < 1 mg/L. Sulfide Treatment Alternatives There are dozens of alternatives for treating sulfide laden waters, ranging from simple air stripping (for the low levels present in groundwaters) to elaborate sulfur recovery plants (used to treat several tons per day at refineries and coal burning power plants). There are processes based on biology (using compost filters, scrubbing media, or inhibition/disinfection), chemistry (oxidation, precipitation, absorption, and combination), and physics (adsorption, volatilization, and incineration). Each process occupies a niche which is often defined by the scale and continuity of treatment, whether the sulfide is in solution or is a gas, the concentration of sulfide involved, and the disposition of the sulfide containing medium. However, for reasons relating to convenience and flexibility, chemical oxidation (using hydrogen peroxide) continues to grow in its scope of application. Treatment with Hydrogen Peroxide While other peroxygens such as permonosulfuric (Caro’s) acid, peracetic acid, and persulfates will oxidize sulfide, their use for this application is overkill. Hydrogen peroxide (H2O2) is considerably simpler and more cost-effective. H2O2 may control sulfides in two ways, depending on the application: Prevention - by providing dissolved oxygen which inhibits the septic conditions which lead to biological sulfide formation; and Destruction - by oxidizing sulfide to elemental sulfur or sulfate ion.

    By USP Technologies based in Atlanta, GEORGIA (US) (USA).

Need help finding the right suppliers? Try XPRT Sourcing. Let the XPRTs do the work for you