Only show results available in Virginia? Ok

sludge concentration Applications

  • Premium

    Hydrogen sulfide removal in sludge management

    In the treatment of sanitary sewage, bio-solids are separated from the liquid. These bio-solids are concentrated and dewatered using filter presses, centrifuges, or other devices. Hydrogen sulfide and mercaptans are released during the dewatering operation.  Carus permanganates react quickly and produce immediate results for hydrogen sulfide removal in order to provide a safe, odor free environment and minimize corrosion due to sulfides.

    By Carus Corporation based in Peru, ILLINOIS (USA).

  • Premium

    Expanded Granular Sludge Bed and ROVAPO®

    Project finished in 2015 in Hungary includes: - ROVAPO® concentration of evaporator effluent from DDGS production with capacity of 1200m3/d - EGSB reactor treating thin stillage and ROVAPO® concentrates

    By SYMBIONA SA based in Warszawa, POLAND.

  • Waste water respirometry solutions for process optimisation

    Respiration rate of activated sludge has been recognised as a key controlling element in the modelling of process control, by the International Water Association Task Group. Actual respiration rate of the sludge in the aeration tanks, as well as the endogenous and maximum respiration rates are variables that indicate the rate of BOD removal and aeration requirements. The maximum respiration rate is also closely linked to the Critical Oxygen Concentration point, that is, the point at which diffusion over the bacterial cell walls ceases and therefore biodegradation is significantly compromised.

    By Strathkelvin Instruments Ltd. based in North Lanarkshire, UNITED KINGDOM.

  • X-ray fluorescence XRF analysis for environmental protection and waste management

    To meet the requirements of new regulations and to protect the environment effectively, industries need techniques that enable the analysis of elements at lowest concentration levels. Bruker X-ray fluorescence (XRF) analysis is the most suitable analytical technique for handling different kinds of materials. Bruker’s XRF, ICP-MS, GC, TOF-MS, FT-IR, CBRNE products and applications help you to monitor contaminated land efficiently and quickly, to determine hazardous elements in the air and water, as well as to classify waste material and to specify products for recycling and disposal. Whether solids, sludge, filters, liquids or powders: there is a fast and simple sample preparation technique for every material type.

    By Bruker Corporation based in Billerica, MASSACHUSETTS (USA).

  • Filamentous Bulking Control with Hydrogen Peroxide

    Basis of Control with Hydrogen Peroxide Hydrogen peroxide may be used to correct a serious filamentous bulking situation or, preferably, to prevent one from occurring until adjustments can be made to remove the cause. When applied to the return activated sludge, hydrogen peroxide supplies dissolved oxygen which helps restore the microbial activity necessary for effective operation, while selectively oxidizing the filaments which retard settling. The effective dose of hydrogen peroxide is a function of time and concentration, and varies from plant to plant. To correct a serious bulking problem, immediate results may be obtained by adding 100 - 200 mg/L H2O2 to the biosolids recycle line. Once control of bulking is obtained, the dose may be reduced to 25 - 50 mg/L H2O2 to prevent re-occurrence. Practical Considerations Filamentous bulking of municipal activated sludge is not a normal occurrence, and suggests more fundamental problems may be at work (e.g., low dissolved oxygen, high sulfide input, heavy organic loading, nutrient imbalance, improper sludge age, or rapid changes in influent characteristics). Consequently, the use of chemicals such as hydrogen peroxide to control bulking should be pursued in concurrently with more fundamental corrective measures.

    By USP Technologies based in Atlanta, GEORGIA (US) (USA).

  • Waste water respirometry solutions for toxicity based consents

    Water companies, water authorities or publicly-owned treatment works (POTW) need to have some knowledge of the composition of the wastes they it receive. In addition to testing for ammonia and BOD or COD levels, treatment works can license industrial discharges on the basis of concentrations of some of the known toxic compounds. However, it is recognised that very many non-regulated toxic materials still enter the treatment works and reduce the efficiency of biodegradation, and may cause toxic shock. The way is now open for more widespread use of direct toxicity tests as a basis for toxicity-based consents. Samples of the industrial effluent are collected at source, for testing on the actual bacteria of the receiving activated sludge. The tests used are the Respiration Inhibition Test and the Nitrification Inhibition Test. Note that this approach mirrors that of the regulators of discharges to receiving waters, who are now using direct toxicity tests (DTA) or whole effluent toxicity tests (WET tests) in order to protect the receiving environment.

    By Strathkelvin Instruments Ltd. based in Motherwell, UNITED KINGDOM.

Need help finding the right suppliers? Try XPRT Sourcing. Let the XPRTs do the work for you