Only show results available in Virginia? Ok

sulfur dioxide emissions Applications

  • Premium

    Fluoride emissions monitoring in aluminum smelters

    Production of aluminum from its ores at aluminum smelters results in carbon dioxide CO2, carbon monoxide CO, sulfur dioxide SO2, and hydrogen fluoride HF gas emissions during the electrolytic process phase to the atmosphere. The gas emissions need to be monitored. Typically the smelters have emission limit values (ELVs) for sulfur dioxide and hydrogen fluoride emissions. These emissions should be measured accurately and with good precision, to ensure the smelter does not exceed its emission limit values. In addition several fluoride compounds may be produced in the electrolytic bath in the event of an oxygen shortage. These compounds include carbon tetrafluoride CF4, hexafluoroethane C2F6, sulfur hexafluoride SF6, and silicon tetrafluoride SiF4. These additional emission components are problematic, as they have high Global Warming Potential (GWP) values. The GWP is a relative measure designed to demonstrate how much heat a greenhouse gas (GHG) traps in the atmosphere. Emission of one kilogram of carbon tetrafluoride into the atmosphere today has the potential of heating the atmosphere as much as 7,000 kilograms of carbon dioxide over the next 100 years.

    By Gasmet Technologies Oy based in Helsinki, FINLAND.

  • Premium

    Applications and Air Pollutants Removed for Marine Power Plants

    Control of ship diesel engine emissions to meet MARPOL requirements for particulate ash and soot, sulfur dioxide and NOx. Special compact inline stack mounted space saving designs. Both open loop arrangements using sea water or closed loop using a range of chemical solutions.  Complete system offerings.

    By Bionomic Industries Inc. based in Mahwah, NEW JERSEY (USA).

  • Premium

    Applications and Air Pollutants Removed in the Petroleum/Petrochemical Industry

    Scrubbing of Hydrogen sulfide, mercaptans and other organosulfur compounds from sour gas and other sources. Proprietary regenerative scrubbing chemistries for hydrogen sulfide removal with sulfur production. By-product production systems for producing sodium hydrosulfide (Nash) from hydrogen sulfide. Sulfur dioxide scrubbing. Recover catalyst dust from FCC units. HCL storage tank vent scrubbing. Removal of HCL and particulate from thermal oxidizers burning chlorinated plastics. Marine drilling platforms sulfur dioxide thermal oxidizer emissions.  Asphalt plant scrubbers and hydrogen sulfide emissions from holding tanks. Pilot plant scrubber systems for hydrogen sulfide. Removal of halogenated and sulfur bearing gaseous compounds from high temperature thermal oxidizers and drilling platforms waste. Well drilling hydrochloric acid storage tanks.

    By Bionomic Industries Inc. based in Mahwah, NEW JERSEY (USA).

  • Premium

    Carbon capture and storage (CCS) applications

    Carbon Capture and Storage (CCS) is an emerging method of reducing greenhouse gas (GHG) emissions of power plants. In a process called ‘scrubbing’, the carbon dioxide emissions can be absorbed into chemical solvents consisting of amines or carbonates. Scrubbing is a well-established method of carbon capture, with virtually every commercial CO2 capture plant in operation using this process. In the process, the first step is the removal of impurities from the flue gas, such as hydrocarbons and oxides of both nitrogen and sulfur (NOx and SOx). Next the purified gas is passed through an absorption column filled with the chemical scrubbing solvent. The solvent reacts with the carbon dioxide and selectively absorbs it from the gas stream. When CO2-rich solvent is heated, the carbon dioxide is released as a nearly pure gas.

    By Gasmet Technologies Oy based in Helsinki, FINLAND.

  • Premium

    Applications and Air Pollutants Removed in the Pulp and Paper Industry

    Equipment and systems for Kraft and Sulfite mills. Control chlorine and chlorine dioxide emissions from bleaching operations. Brown stock washer emissions. Control particulate emissions from lime kilns, lime slakers, black liquor recovery boilers, furnaces and gasification units. Particulate from bark and sludge boilers and sulfur dioxide and trioxide removal from those sources. Control of hydrogen sulfide, TRS and methanol emissions from LVHC and HVLC gas streams. Complete fugitive lime dust collection systems to handle emissions from conveyors, elevators and feeders. Smelt dissolving tank particulate and TRS gases. Direct contact waste heat recovery. Black liquor evaporation. Treatment and subcooling of boiler and kiln gases to remove particulate, sulfur dioxide and TRS for precipitated calcium carbonate production (PCC). Dust from tissue and paper rollers and dryers. NASH and sodium hypochlorite scrubbing. Waste heat recovery with direct contact heat exchangers.

    By Bionomic Industries Inc. based in Mahwah, NEW JERSEY (USA).

Need help finding the right suppliers? Try XPRT Sourcing. Let the XPRTs do the work for you