Only show results available in Virginia? Ok

sulfur dioxide monitor Applications

  • Sulfur Dioxide (SO2) monitoring

    Sulfur Dioxide (SO2) is the product of the combustion of sulfur compounds and causes significant environmental pollution. The main source of sulfur dioxide SO2 in the environment are from various industrial processes such as the burning of coal in power stations, the extraction of metals from ore and combustion of fuel within automobiles.

    By Ecotech Pty Ltd based in Knoxfield, AUSTRALIA.

  • Total Sulfur monitoring

    Total Sulfur includes all the gases described within total reduced sulfur, as well as sulfur dioxide as these compounds are oxidised forms of sulfur. Exposure to sulfur dioxides, and other reduced sulfur based compounds can cause many harmful effects in humans including headaches, general discomfort up to death in large doses. Those with impaired heart or lung function and asthmatics are at increased risk. Sulfur dioxide, one of the major pollutants, is absorbed by soils and plants and captured within and below clouds and in certain circumstances can increase the acidity of rain.

    By Ecotech Pty Ltd based in Knoxfield, AUSTRALIA.

  • Total Reduced Sulfur (S) monitoring

    Total reduced sulfur(s), which include hydrogen sulfide (H2S), methyl mercaptan (methanethiol, CH3SH), dimethyl sulfide (CH3SCH3), and dimethyl disulfide (CH3S2CH3), occur naturally in the environment and can also be present in numerous industrial gaseous streams – petroleum refining, natural gas extraction, and chemical operations like the pulp/paper industry. Hydrogen sulfide is the most prevalent of the total reduced sulfurs, and is commonly found in volcanic gases, marshes and swamps, wetlands and mud flats, sulfur springs and decaying organic matter. Additionally, hydrogen sulfide is produced by living organisms, including human beings, through the digestion and metabolization of sulfur-containing materials. It must be noted that sulfur dioxide (SO2), sulfur trioxide (SO3) and sulfuric acid mist are not included in the determination of TRS, as these are oxidized sulfur compounds and are permitted and monitored separately from TRS.

    By Ecotech Pty Ltd based in Knoxfield, AUSTRALIA.

  • Premium

    Total sulfur measurement for sulfur compounds in CO2 for food & beverage industry

    The BevAlert Model 8900 provides a total sulfur measurement for sulfur compounds in Carbon Dioxide. The measurement includes organic sulfides, Sulfur Dioxide, Carbonyl Sulfide, and Hydrogen Sulfide. The instrument is utilized by Specialty Gas Manufacturers and the Food and Beverage Industry to monitor sulfur compounds in CO2 used in carbonated beverages.

    By MOCON, Inc. - Baseline based in Lyons, COLORADO (USA).

  • SO2 Monitoring in Air

    SO2 (sulfur dioxide) is measured in a number of applications. SO2 is used as a food grade preservative and must be regulated in accordance with government-set criteria to be safe for consumers. It is also measured in fuel exhaust to control for environmental pollution and in cement plants for process control.

    By Unisearch Associates Inc. based in Concord, ONTARIO (CANADA).

  • Premium

    Fluoride emissions monitoring in aluminum smelters

    Production of aluminum from its ores at aluminum smelters results in carbon dioxide CO2, carbon monoxide CO, sulfur dioxide SO2, and hydrogen fluoride HF gas emissions during the electrolytic process phase to the atmosphere. The gas emissions need to be monitored. Typically the smelters have emission limit values (ELVs) for sulfur dioxide and hydrogen fluoride emissions. These emissions should be measured accurately and with good precision, to ensure the smelter does not exceed its emission limit values. In addition several fluoride compounds may be produced in the electrolytic bath in the event of an oxygen shortage. These compounds include carbon tetrafluoride CF4, hexafluoroethane C2F6, sulfur hexafluoride SF6, and silicon tetrafluoride SiF4. These additional emission components are problematic, as they have high Global Warming Potential (GWP) values. The GWP is a relative measure designed to demonstrate how much heat a greenhouse gas (GHG) traps in the atmosphere. Emission of one kilogram of carbon tetrafluoride into the atmosphere today has the potential of heating the atmosphere as much as 7,000 kilograms of carbon dioxide over the next 100 years.

    By Gasmet Technologies Oy based in Helsinki, FINLAND.

Need help finding the right suppliers? Try XPRT Sourcing. Let the XPRTs do the work for you