Only show results available in Virginia? Ok

total organic carbon monitoring Applications

  • Measurement solution for total VOC via FTIR

    Total Volatile Organic Compounds (VOCs) is a common measurement required from industrial emissions. Commonly, a single measurement value is obtained through the use of a Flame Ionisation Detection (FID) analyser. The pyrolysis of the gas stream in a FID analyser allows it to make a measurement of the carbon content of the gas stream. FID analyser cannot indicate the relative abundances of different organic species in a gas stream and often have widely different responses for different gases. However, they are taken as the standard reference method for Total VOC emission measurements.

    By Protea Limited based in Middlewich, UNITED KINGDOM.

  • Water monitoring for laboratories

    Chemical purity of water is assessed for a wide variety of different chemicals depending on the type of water and applicable local legislation. 

    Chemical analysis of water can include testing for nitrogen compounds, dissolved heavy metals, and total and dissolved organic carbon.

    Common water monitoring applications include:

    • Determination of suspended solids in waterusing for example glass fiber filters.
    • Chemical analyses of for example heavy metals, dissolved organic carbons (DOC), and ions.
    • Microbiological analyses using membrane based microfiltration methods

    By GE Healthcare UK Limited based in Little Chalfont, UNITED KINGDOM.

  • Premium

    Total sulfur measurement for sulfur compounds in CO2 for food & beverage industry

    The BevAlert Model 8900 provides a total sulfur measurement for sulfur compounds in Carbon Dioxide. The measurement includes organic sulfides, Sulfur Dioxide, Carbonyl Sulfide, and Hydrogen Sulfide. The instrument is utilized by Specialty Gas Manufacturers and the Food and Beverage Industry to monitor sulfur compounds in CO2 used in carbonated beverages.

    By MOCON, Inc. - Baseline - AMETEK based in Lyons, COLORADO (USA).

  • Premium

    Monitoring drinking water quality

    Drinking water supply and distribution systems around the world (a critical and interdependent component of a nation’s infrastructure) are vulnerable to both intentional and accidental contamination. Unusual water quality may serve as a warning of potential contamination. The available physico-chemical sensors utilize general water quality parameters, such as free chlorine, oxidation reduction potential (ORP), total organic carbon (TOC), turbidity, pH, dissolved oxygen, chloride, ammonia, nitrate to detect the contamination. Generally, one or more of these water quality parameters will change due to the injection of a contaminant. However, no single chemical sensor responds to all possible contaminants nor can they give any indication of the potential toxicity of complex mixtures.

    By microLAN B.V. based in Waalwijk, NETHERLANDS.

Need help finding the right suppliers? Try XPRT Sourcing. Let the XPRTs do the work for you