Only show results available in Virginia? Ok

volatile organic compounds monitoring Applications

  • Premium

    Analysis of VOC compounds in water by Purge & Trap or dynamic headspace

    Context & Challenges Volatile organic compounds (VOC) can be dissolved in water. Sometimes water is polluted and to study contamination of VOC in finished drinking water, VOC must be measured. Chromatotec® Solutions Chromatotec® has developed a specific system for the measurement of VOC in water: a Purge & Trap system, the airmoPURGE. The analyzer is coupled with a degasing system allowing the extraction of dissolved gases. The complete system is based on: - 502.2 method from US EPA – “Volatile organic compounds in water by purge and trap capillary column gas chromatography with photoionization and electrolytic conductivity detectors in series – Revision 2.1”. - 524.2 method from US EPA – “Measurement of purgeable organic compounds in water by capillary column gas chromatography/mass spectrometry – Revision 4.0”.

    By Chromatotec Group based in Val de Virvée, FRANCE.

  • Premium

    Determination of TOC in stack

    PROBLEM: The industrial chimney's emissions of Volatile Organic Compounds (VOCs) are becoming issues of global importance and to have an accurate knowledge about how to test VOC turns into a strategic issue. VOC emissions are quantified and monitored according to standard EN 12619, using FID analyser which uses hydrogen and other reference gases in pressurized cylinder. Operators must then approach the sampling point, often placed several meters from the ground, climbing chimneys of industrial settlements with instruments and cylinders. Is it possible making this job easier and safer? SOLUTION: Using the Polaris FID analyser produced by Pollution Srl, Italy, it is possible to carry out the VOCs monitoring according to EN 12619 without lifting accessories and heavy weights typically involved with FID analyser. Polaris FID analyser complies with this standard regulation but what is really a breakthrough and cutting-edge, is the unmatched portability and the next generation technology

    By Pollution Srl based in Budrio, ITALY.

  • Premium

    PTR-TOFMS systems for Flux Measurement of BVOCs

    The ultra-fast analysis capabilities of IONICON PTR-TOF instruments are essential for eddy covariance flux measurements, allowing to study deposition and emission rates of biogenic volatile organic compounds (BVOCs).

    By Ionicon Analytik Ges.m.b.H. based in Innsbruck, AUSTRIA.

  • Air monitoring equipments for soil contamination monitoring

    Previous land uses or accidental spills can result in Volatile Organic Compound (VOC) contamination of soils. Volatile and semi-volatile compounds can then permeate through the soil and may persist for several years. This contamination can be traced and measured using our Soil Probes in conjunction with our VOC sorbent tubes. Soil probes are also useful in checking the effectiveness of remediation actions. This monitoring technique provides a cost-effective identification of hazardous gases.

    By Gradko International Ltd based in Winchester, UNITED KINGDOM.

  • Premium

    Low concentrations monitoring of benzene and aromatic hydrocarbons (BTEX) for pollution control and environmental monitoring

    With over 15 years of experience in the measurement of volatile organic compounds (VOC), Environment SA announces the VOC72M, a new generation analyzer for the measurement of BTEX compounds by gas chromatography with photo-ionization detector (PID). The VOC72M can handle up to 40 compounds and eight configurations for analysis. This compact and fully automated analyzer with wide voltage range specifications (90-240V) provides equivalent performance to the laboratory chromatographs and is particularly suited to fixe or mobile ambient air quality monitoring laboratories. The VOC72M is fitted with a PID detector new generation, much more sensitive, more stable and whose lamp does not need to be cleaned; the analyzer integrates flow control fittings a 3 levels security system built on and uses only one gas (nitrogen). This robust and low maintenance instrument performs all the functions (sampling, analysis and data management) in a simple and completely autonomous mode. It is a particular

    By Environnement S.A based in Poissy, FRANCE.

  • Premium

    Measuring aromatic hydrocarbons (BTEX) for pollution control and environmental monitoring

    The Series 8900 BTEX Analyzer provides direct measurement of Benzene, Toluene, Ethylbenzene, and Xylenes in ambient air. This instrument is utilized in ambient air networks around metropolitan areas and fence-line monitoring at industrial sites. The Series 8900 BTEX Analyzer employs a photoionization detector (PID) as the sensing element. This detector is specific to volatile organic compounds. The Benzene, Toluene, Ethylbenzene, and Xylene`s in the gas sample are physically separated using proprietary GC columns.

    By MOCON, Inc. - Baseline based in Lyons, COLORADO (USA).

  • Premium

    Measurement solution for total VOC via FTIR

    Total Volatile Organic Compounds (VOCs) is a common measurement required from industrial emissions. Commonly, a single measurement value is obtained through the use of a Flame Ionisation Detection (FID) analyser. The pyrolysis of the gas stream in a FID analyser allows it to make a measurement of the carbon content of the gas stream. FID analyser cannot indicate the relative abundances of different organic species in a gas stream and often have widely different responses for different gases. However, they are taken as the standard reference method for Total VOC emission measurements.

    By Protea Limited based in Middlewich, UNITED KINGDOM.

  • Premium

    Indoor Air Quality Monitoring

    Accurate control of critical indoor environmental parameters is not only essential for the well-being and comfort of building occupants, but also has a major impact on energy efficiency. A multitude of parameters can affect indoor air quality (IAQ) from gases such as carbon dioxide (CO2), carbon monoxide (CO) and volatile organic compounds to particulates, humidity and bacteria such as legionella. CO2 is one of the greatest variables affecting indoor environmental quality since it is produced by people occupying the building. CO2 production is a function of the number, size and activity levels of the people present in the building. Local concentrations can therefore vary dramatically – for example when a meeting room is occupied, or while workers are on lunch or coffee breaks. Excess CO2 levels can lead to tiredness and a lack of concentration and can contribute to the symptoms of Sick Building Syndrome such as headaches, eye, nose and throat irritation, itchy skin and nausea.

    By Edinburgh Instruments Ltd based in Livingston, UNITED KINGDOM.

  • Premium

    Measurement solution for complex, real-time VOC measurement with atmosFIR FTIR gas analyser platform

    Introduction

    Volatile organic compounds (VOCs) are a group of organic compounds which have a low vapour pressure at room temperature, meaning that they will readily evaporate into the surrounding air. The term VOC refers to many different classes of organic compounds such as alkanes, alkenes, alcohols, aldehydes, aromatics and many more.

    By Protea Limited based in Middlewich, UNITED KINGDOM.

  • Premium

    Low level measurement of VOCs and Terpenes close to the sea and the Landes Forest

    It has been established that organic aerosol (OA) makes up for a major fraction of fine particulate matter in all region of the atmosphere. This fraction accounts approximately for half of the total PM2.5 dry mass.1,2 Primary OA is directly emitted in the troposphere from anthropological and natural sources whereas secondary OA (SOA) is formed in-situ in the atmosphere from the oxidation of biogenic or anthropogenic gas-phase precursors and subsequent partitioning of the less volatile products into the particle phase. The current number is that, on a global scale, SOA would represent around 60% of the overall OA.3 However, recent global mass-balance estimations for the removal of volatile organic compounds (VOC) suggest that this number could under-predicts SOA production.4 Recent field measurements in urban locations are also in support of a larger share, indicating that SOA is the dominant fraction of OA, with amounts considerably 20 greater than models predictions.

    By Chromatotec Group based in Val de Virvée, FRANCE.

  • Premium

    Carbon Dioxide Monitoring for Indoor Air Quality

    Introduction: Accurate control of critical indoor environmental parameters is not only essential for the well-being and comfort of building occupants, but also has a major impact on energy efficiency. A multitude of parameters can affect indoor air quality (IAQ) from gases such as carbon dioxide, carbon monoxide and volatile organic compounds to particulates, humidity and bacteria such as legionella. Carbon dioxide is one of the greatest variables affecting indoor environmental quality since it is produced by people occupying the building. Carbon dioxide production is a function of the number, size and activity levels of the people present in the building. Local concentrations can therefore vary dramatically – for example when a meeting room is occupied, or while workers are on lunch or coffee breaks.

    By Edinburgh Instruments Ltd based in Livingston, UNITED KINGDOM.

  • Premium

    Measurement of acetaldehyde, benzene, toluene, ethylbenzene, & xylenes in CO2 applications for food & beverage industry

    The BevAlert Model 8900 provides direct measurement of Acetaldehyde, Benzene, Toluene, Ethylbenzene, and Xylenes (ABTEX) in Carbon Dioxide. The instrument is utilized by Specialty Gas Manufacturers and the Food and Beverage Industry to monitor trace volatile organic compounds in CO2 used in carbonated beverages.

    By MOCON, Inc. - Baseline based in Lyons, COLORADO (USA).

  • Environmental

    The analysis of volatile organic compounds at low concentration levels is fundamental to pollution monitoring and control. Hiden’s Hydramass spectrometer is a multi-stream gas analysis system for analysis of volatile organic compounds to the sub ppm level. In sea water the analysis of volatile organic compounds is used for both pollution monitoring and ecological studies. Hiden’s HPR 40 dissolved species analyser provides ppb sensitivity

    By Hiden Analytical based in Warrington, UNITED KINGDOM.

  • Air and particule sampling for the oil and gas industries

    Ormantine offers a wide range of products and services to meet the array of different needs that arise in the oil and gas industries. Volatile Organic Compounds (VOCs), benzene, and other compounds are released during drilling, hydraulic fracturing (fracking) and other extraction procedures. Monitor NOx emissions from heavy duty equipment, particulate matter, and ground level ozone, the formation of which is contributed to by VOCs from processing, transportation, and storage of oil and gas.

    By Ormantine USA Ltd., Inc. based in Palm Bay, FLORIDA (USA).

Need help finding the right suppliers? Try XPRT Sourcing. Let the XPRTs do the work for you