Only show results available in Virginia? Ok

water organics monitoring Applications

  • Premium

    Monitoring Raw Water Intake

    The Situation: Hydrocarbons in water intake used for municipal drinking water and desalination systems are commonly limited to 1 part per million. Problem: Naturally occurring organics in raw water are typically treated with chemicals. Total Organic Carbon (TOC) analyzers in the water treatment system can alert technicians when some type of organic material is present but cannot differentiate between natural organics, such as algae or leaves and hydrocarbons. Solution: A fluorescence monitor can be configured for sensitivity to hydrocarbons, with no significant response to other organics. The TD-4100XDC has the highest sensitivity to hydrocarbons in raw water, has a low cost of ownership, and can be modified with Teflon, Monel, and other corrosion resistant materials for sea water environments. Please visit for more information about this application.

    By Turner Designs Hydrocarbon Instruments, Inc. based in Fresno, CALIFORNIA (USA).

  • Water monitoring for laboratories

    Chemical purity of water is assessed for a wide variety of different chemicals depending on the type of water and applicable local legislation. 

    Chemical analysis of water can include testing for nitrogen compounds, dissolved heavy metals, and total and dissolved organic carbon.

    Common water monitoring applications include:

    • Determination of suspended solids in waterusing for example glass fiber filters.
    • Chemical analyses of for example heavy metals, dissolved organic carbons (DOC), and ions.
    • Microbiological analyses using membrane based microfiltration methods

    By GE Healthcare UK Limited based in Little Chalfont, UNITED KINGDOM.

  • Continuous Instream Monitoring

    Turbidity in natural waters is recognized as an important indicator of its environmental health, and because it's a good surrogate for suspended sediment, monitoring turbidity has always been the "holy grail" for hydrologists. But because of earlier technology, "turbidity" has traditionally been a "bad word". The DTS-12 turbidity sensor is the first sensor to make turbidity monitoring practical, and no longer difficult, inaccurate, expensive, or labor-intensive. Turbidity is the cloudiness or murkiness of water caused by suspended organic or inorganic materials. Turbidity in natural waters is recognized as an important indicator of its environmental health.

    By FTS based in Victoria, BRITISH COLUMBIA (CANADA).

  • Environmental Monitoring

    Environmental monitoring is becoming more important every day in local, national and international policies, showing the environmental awareness demanded by society.

    This fact gives rise to an increase in the amount of legislation that obliges companies to law enforcement. Thus, the necessity of making more pollutants controls means high analysis expenses to the companies, which need to subcontract this service.

    Although applications in this area advance, there is still a clear demand to get new portable and versatile analysis systems for many different application fields such as pollution in environmental or waste waters, monitoring nutrients in agricultural or horticultural water as well as general process control in chemistry industry. Because of the number of enviromental analysis required, there is a need for screening and monitoring measurements of these compounds at contaminated areas.

    Traditional monitoring techniques are typically based on laboratory analysis of field-collected samples that require considerable effort and expense, and the sample may change before analysis. Moreover, the equipment currently available is too large and expensive and it cannot be made portable.Alternatively, microfluidic and electrochemical sensor technologies can contribute to the development of new portable monitoring systems, complementing standard analytical methods for different environmental monitoring applications.In this way, the decentralization and integration of all those typical analyses is the paramount importance in order to reduce cost, simplify the analytical process and make more accessible these technologies to end-users. The development of portable, robust, and accurate Lab-on-a-Chip systems to monitor priority compounds such as contaminants, explosives, chemical warfare agents, inorganic and organic ions is a demand of modern society. Portability allows analyses to be carried out outside of the laboratory, minimizing the risk of contaminating the sample and leading to a faster response time at a lower cost.

    Thus, MicruX solutions and technologies open the gate to develop portable and esay-handly Lab-on-a-Chip devices in order to improve pollutants in-situ analysis in a very economic and efficient way.

    By MicruX Technologies based in Oviedo, SPAIN.

  • Premium

    Seawater Biotoxicity monitoring to protect the coastal waters of Italy

    The recorded death of fish in the river that flows out of the industrial zone of Scarlino has created the need of the installation of a biological alarm system. The decision was made to work with an automatic system, iTOXcontrol created by microLAN-The Netherlands represented in Italy by Ecotox Lds, which uses marine bacteria. The system compares the values of the light emission from these organisms at the entrance and exit of the canal, generating alarms in the presence of toxic substances.

    By microLAN On-line Biomonitoring Systems based in Waalwijk, NETHERLANDS.

  • Premium

    Wastewater solutions for ballast water treatment monitoring

    Problem: To operate safely and efficiently, cargo ships take in water to provide stability. This water, referred to as ballast, carries all kinds of bacteria, microbes and micro-algae. The ballast water must inevitably be discharged when the ship takes on cargo, often thousands of kilometers away from the port of origin, transferring pathogens and aquatic organisms that can cause serious environmental, economic and health problems.

    By Real Tech Inc. based in Whitby, ONTARIO (CANADA).

  • Premium

    Water quality monitoring for chemical industry

    Chemical plants that produce high quantities of phenols (plastics, pesticides and pharmaceutical industries) and other aromatic organic compounds are excellent candidates for wastewater characterization via spectral analysis. Chemicals that contain conjugated double bonds absorb UV radiation remarkably well. The benefits include higher precision in process control as well as optimization of wastewater treatment.

    By Real Tech Inc. based in Whitby, ONTARIO (CANADA).

  • Premium

    Water quality monitoring for textile industry

    Wastewater from a textile facility contains a variety of dyes and organic chemicals from the manufacturing processes that are often difficult to treat. Spectral analysis is well suited for monitoring waste streams to identify problematic dyes prior to treatment. Continuous monitoring of effluent wastewater for BOD and COD helps to ensure effective treatment and quality of effluent to ensure regulatory goals are met prior to discharge.

    By Real Tech Inc. based in Whitby, ONTARIO (CANADA).

  • Marine emissions monitoring

    In recent years, new regulations have been introduced governing emissions from ships. With the International Maritime Organization (IMO) adopting Annex VI of MARPOL designed to limit sulphur oxides (SOx), nitrous oxides (NOx) and particulate matter emissions, as well as introducing emission control areas (ECAs) to reduce emissions of those air pollutants further in designated sea areas, ship owners/operators can face hefty fines for failing to meet these new requirements on the “polluter pays” principle.

    By DynOptic Systems Ltd based in Brackley, UNITED KINGDOM.

  • Premium

    Reduce biofilm formation

    In many industrial or professional applications where water is being stored, biofilm may grow. The growth of biofilm can damage the installations and reduce efficiency of the circuit. A biofilm can grow certain substrates which can be found in water. When temperatures are high, for example in cooling towers, a matrix of different micro- organisms such as bacteria, fungi, algae can grow very rapidly causing the formation of a biofilm on certain surfaces submerge in water. During the formation of this biofilm, certain micro organisms starts producing extra cellular polymeric substances (EPS) which reinforce the biofilm structure.

    By LG Sonic based in Zoetermeer, NETHERLANDS.

  • Premium

    Water quality monitoring for semiconductor industry

    Water is fundamental to the manufacturing process in a semiconductor facility. Electronic components are rinsed or washed several times during the producing process with ultrapure water (UPW) to remove residue. Continuous monitoring of organic constituents (TOC) on the influent city water assist with UPW production. Good quality waste streams for the manufacturing process can also be monitored for reuse potential.

    By Real Tech Inc. based in Whitby, ONTARIO (CANADA).

  • Premium

    Water quality monitoring for dairy industry

    Continuous monitoring of process streams and waste streams in a dairy industry setting can provide various benefits to the operators. One major benefit is that it is possible to minimize product lost to the waste stream by means of reliable online monitoring of organics (TOC) at various points in the plant. In addition, due to the nitrogen deficient nature of milk wastes it is possible to optimize ammonia dosing by accurately and continuously monitoring the organic loads entering the waste stream.

    By Real Tech Inc. based in Whitby, ONTARIO (CANADA).

  • Premium

    Online Monitoring for the Demi-Water Production Industry

    Demineralization is the process of removing mineral salts as well as organic impurities from water by means of ion-exchange and can be found in various industries such as the chemical, food & beverage, irrigation and filtration industries. The consuming side of the industry relies on ever increasing quality and availability of demi-water while the manufacturers have to balance cost/output. AppliTek provides high quality analytical tools to increase process efficiency and quality control. Continuous measurements with high accuracy are carried out on the critical QC/QA parameters of the deionizing process:

    • Silica
    • Low sodium
    • Total Organic Carbon

    By AppliTek NV - Environmental Analysis Division based in Nazareth, BELGIUM.

  • Sediment and Nutrient Loads

    SedEvent is an event-driven, automatic grab sampling system that provides a simple and practical method of accurately determining suspended sediment and nutrient loads. While suspended sediment concentration (SSC) cannot be directly measured accurately or reliably, turbidity has been shown to be an excellent surrogate for SSC. Turbidity is caused by suspended particulate matter such as clay, silt, algae, organic and inorganic chemicals and acids like fertilizers, and microscopic organisms like harmful bacteria. These contents give water its cloudy or turbid appearance, and turbidity in natural waters is recognized as an important indicator of natural health. Measuring suspended sediment concentrations used to be labor-intensive, costly, inaccurate and impractical. SedEvent not only makes it possible and practical, it makes it simple.

    By FTS based in Victoria, BRITISH COLUMBIA (CANADA).

  • Premium

    Analysis of VOC compounds in water by Purge & Trap or dynamic headspace

    Context & Challenges Volatile organic compounds (VOC) can be dissolved in water. Sometimes water is polluted and to study contamination of VOC in finished drinking water, VOC must be measured. Chromatotec® Solutions Chromatotec® has developed a specific system for the measurement of VOC in water: a Purge & Trap system, the airmoPURGE. The analyzer is coupled with a degasing system allowing the extraction of dissolved gases. The complete system is based on: - 502.2 method from US EPA – “Volatile organic compounds in water by purge and trap capillary column gas chromatography with photoionization and electrolytic conductivity detectors in series – Revision 2.1”. - 524.2 method from US EPA – “Measurement of purgeable organic compounds in water by capillary column gas chromatography/mass spectrometry – Revision 4.0”.

    By Chromatotec Group based in Val de Virvée, FRANCE.

  • Premium

    Drinking water solutions for the TOC removal efficiency

    Problem: Organic matter (UV254/TOC) in drinking water can react with chlorine to form harmful disinfection by-products (DBPs). Some removal of TOC is achieved through the conventional drinking water treatment processes, while carbon absorption may be used to further enhance the removal of TOC prior to chlorine disinfection.

    By Real Tech Inc. based in Whitby, ONTARIO (CANADA).

  • Premium

    Water quality monitoring for brewery industry

    Monitoring process streams and waste streams continuously in a brew house can provide many benefits to operations. Monitoring product in process for color or concentration provides consistency and quality measures. Product loss can be quantified by monitoring waste streams. Processes can be improved to increase efficiency and minimize effluent waste. Effluent waste streams can also be monitored for organic loading with BOD and COD correlations to ensure compliance for discharge.

    By Real Tech Inc. based in Whitby, ONTARIO (CANADA).

  • Premium

    Water quality monitoring for food & beverage industry

    Wastes that are rich in starch such as those that occur in potato processing industries require a balanced addition of other macronutrients such as nitrogen and phosphorus. In order to optimize the dosing of these nutrients it is essential to have a good idea about the organic load entering the biological treatment reactor. Measurement of colour can help with quality control and flavour consistency.

    By Real Tech Inc. based in Whitby, ONTARIO (CANADA).

  • Premium

    Water quality monitoring for pulp & paper industry

    Pulp and paper waste streams are exceptionally well suited for spectral analysis due to the high concentration of UV/Vis light absorbing organics in their process water and waste streams. Continuous monitoring of the organic load by means of COD/BOD correlations will help ensure the treatment process is carried out in the most efficient way possible by optimizing aeration rates and nutrient dosing while also making sure that all the regulatory goals are met.

    By Real Tech Inc. based in Whitby, ONTARIO (CANADA).

  • Ozone/UV systems for swimming pool water treatment

    Studies have proven that chlorine use has negative consequences due to the formation of byproducts, i.e. chlorinated organic compounds and chloramines. Irritation of eyes and mucous membranes, drying out the skin as well as “chlorine smell” are well known troubles. However, these byproducts also accelerate the corrosion in pool halls and significant risk is given by their toxicity (chloramines, combined chlorine) and/or carcinogenicity. Higher rate of asthma prevalence is one of the consequences. These are the reasons why the combined chlorine content - as a marker of chlorination byproducts presence - is to be monitored and why its limit values are specified by authorities. To meet the limits can be tedious and expensive because more water has to be changed and heated up. Chlorine disinfection is not sufficient to prevent infections caused by some waterborne pathogens as dangerous protozoan parasites Cryptosporidium parvum and Giardia lamblia.

    By Lifetech based in Brno, CZECH REPUBLIC.

Need help finding the right suppliers? Try XPRT Sourcing. Let the XPRTs do the work for you