Only show results in Virginia? Ok

water pollution monitoring Applications

  • Environmental Monitoring - Water Screening for Pollutants - Pesticide Screening

    Water screening for the detection of pollutants owning to large classes of chemical compounds such as triazine, fenylurea, diazine and phenolic pesticides can be performed. The presence of environmental pollutants can be determined utilizing biological materials such as photosynthetic biomediators (Plants, Algae, Cyanobacteria) and enzymes (e.g. Laccase or Tyrosinase). AMPBIO-ITO Light provides amperometric measurements performed on electro-active biological material suspended, deposited or grown on an Indium Tin Oxide (ITO) electrode, before and after the injection of the analyte under test. OPTICBIO-Multicell Survival optical is based on multicell arrays for biological material survival/storage and fluorescence measurement for the control of the physiological activity.

    By Biosensor based in Formello, ITALY.

  • Environmental Monitoring

    Environmental monitoring is becoming more important every day in local, national and international policies, showing the environmental awareness demanded by society.

    This fact gives rise to an increase in the amount of legislation that obliges companies to law enforcement. Thus, the necessity of making more pollutants controls means high analysis expenses to the companies, which need to subcontract this service.

    Although applications in this area advance, there is still a clear demand to get new portable and versatile analysis systems for many different application fields such as pollution in environmental or waste waters, monitoring nutrients in agricultural or horticultural water as well as general process control in chemistry industry. Because of the number of enviromental analysis required, there is a need for screening and monitoring measurements of these compounds at contaminated areas.

    Traditional monitoring techniques are typically based on laboratory analysis of field-collected samples that require considerable effort and expense, and the sample may change before analysis. Moreover, the equipment currently available is too large and expensive and it cannot be made portable.Alternatively, microfluidic and electrochemical sensor technologies can contribute to the development of new portable monitoring systems, complementing standard analytical methods for different environmental monitoring applications.In this way, the decentralization and integration of all those typical analyses is the paramount importance in order to reduce cost, simplify the analytical process and make more accessible these technologies to end-users. The development of portable, robust, and accurate Lab-on-a-Chip systems to monitor priority compounds such as contaminants, explosives, chemical warfare agents, inorganic and organic ions is a demand of modern society. Portability allows analyses to be carried out outside of the laboratory, minimizing the risk of contaminating the sample and leading to a faster response time at a lower cost.

    Thus, MicruX solutions and technologies open the gate to develop portable and esay-handly Lab-on-a-Chip devices in order to improve pollutants in-situ analysis in a very economic and efficient way.

    By MicruX Technologies based in Oviedo, SPAIN.

  • Premium

    Wastewater solutions for the industrial effluent pollution management

    Problem: Industrial manufacturers face stringent regulations for discharging wastewater to the environment and municipal sewer systems. Biochemical Oxygen Demand (BOD) is a primary concern for many discharge limits, as wastewaters high in BOD can have adverse impacts on the aquatic environments by leading to oxygen depletion. In some cases, as a means to supplement BOD, it is also desirable to monitor chemical oxygen demand (COD) of industrial effluents. Both of these tests, are time and labour intensive reducing the frequency at which they can be measured for a given effluent.

    By Real Tech Inc. based in Whitby, ONTARIO (CANADA).

  • Continuous Monitoring of Nitrates and Other Water Quality Parameters

    Nitrate is one of the most important parameters in assessing surface and ground water quality. Nitrates are naturally present in surface and ground waters in low concentrations, but are harmful to humans and livestock and cause aquatic ecosystem degradation in high concentrations. Nitrates enter the environment as human-induced pollution from a variety of sources, but the largest source is from agricultural fertilizer runoff . Other sources include wastewater treatment discharge, septic systems, and from pet waste. Nitrate is highly soluble in water and therefore readily leaches into water sources, whereas other human associated pollutants, such as phosphates and ammonia, are not transported as easily. This ability to be quickly transported into ground and natural waters such as drinking water wells, aquifers, reservoirs, lakes, and streams, coupled with its health and environmental implications make nitrate pollution and monitoring of major concern.

    By Hanna Instruments, Inc based in Woonsocket, RHODE ISLAND (USA).

  • Premium

    Water quality monitoring for environmental industry

    Maintaining the quality of natural waters provides numerous economic benefits by preventing severe deterioration of water resources that would require expensive treatment operations to protect public health and the environment. For instance, monitoring nitrates in surface waters can possibly prevent algal blooms from happening by facilitating the necessary steps to stop pollution sources from discharging nitrogen nutrients into the water system.

    By Real Tech Inc. based in Whitby, ONTARIO (CANADA).

  • Monitoring surface water for wastewater treatment industry

    Pollution Risk: Surface water encompasses storm water derived from hard standing areas, river water and reservoirs. All types of surface water are at risk from ingress of pollution and therefore need to be monitored. On-line continuous monitoring can identify and alarm pollution so corrective action can be taken

    By Pollution & Process Monitoring Ltd based in Sevenoaks, UNITED KINGDOM.

  • Marine emissions monitoring

    In recent years, new regulations have been introduced governing emissions from ships. With the International Maritime Organization (IMO) adopting Annex VI of MARPOL designed to limit sulphur oxides (SOx), nitrous oxides (NOx) and particulate matter emissions, as well as introducing emission control areas (ECAs) to reduce emissions of those air pollutants further in designated sea areas, ship owners/operators can face hefty fines for failing to meet these new requirements on the “polluter pays” principle.

    By DynOptic Systems Ltd based in Brackley, UNITED KINGDOM.

  • Premium

    Waste water treatment plants Personnel Safety & H2S filter management

    Context & Challenges Globally, the wastewater treatment is the first public health issue. Urban development leads to urbanization near waste water treatment plant and extension of sewerage network. These aspects induce to an augmentation of sulfur compounds (H2S, mercaptans and sulfides) which are very corrosive, odorant and toxic. To monitor this compounds online CHROMATOTEC® offers high meteorological solutions. As a result of the confinement of the waste water stations, toxic components such as H2S and Methylmercaptan increased. Safety of employees on such working sites has therefore become of major problem. To fight this hazardous pollution, air filtering systems have been installed. For the station managers, personal safety coupled with the need for constant air quality control and filter change has been a heavy task.

    By Chromatotec Group based in Val de Virvée, FRANCE.

  • Premium

    Analysis of VOC compounds in water by Purge & Trap or dynamic headspace

    Context & Challenges Volatile organic compounds (VOC) can be dissolved in water. Sometimes water is polluted and to study contamination of VOC in finished drinking water, VOC must be measured. Chromatotec® Solutions Chromatotec® has developed a specific system for the measurement of VOC in water: a Purge & Trap system, the airmoPURGE. The analyzer is coupled with a degasing system allowing the extraction of dissolved gases. The complete system is based on: - 502.2 method from US EPA – “Volatile organic compounds in water by purge and trap capillary column gas chromatography with photoionization and electrolytic conductivity detectors in series – Revision 2.1”. - 524.2 method from US EPA – “Measurement of purgeable organic compounds in water by capillary column gas chromatography/mass spectrometry – Revision 4.0”.

    By Chromatotec Group based in Val de Virvée, FRANCE.

  • Premium

    Waste water treatment plants Air quality control by TRS MEDOR

    Context & Challenges Globally, the wastewater treatment is the first public health issue. Urban development leads to urbanization near waste water treatment plant and extension of sewerage network. These aspects induce to an augmentation of sulfur compounds (H2S, mercaptans and sulfides) which are very corrosive, odorant and toxic. To monitor this compounds online CHROMATOTEC® offers high meteorological solutions. At the entrance of the waste water plants, where the waste water arrives, strongly smelling and polluted air is captured and neutralised by a chemical cleaning process called ‘’Stripping’’. The correct amount of chemical products needed to neutralise the polluted air has to be calculated.

    By Chromatotec Group based in Val de Virvée, FRANCE.

  • Premium

    Water Quality Monitoring for the Groundwater Monitoring Industry

    The reasons for testing water quality in groundwater are numerous. Monitoring water quality and conducting tests is a good way to gather data on aquifer hydraulics. It can also be used to monitor parameters such as rhodamine, which helps to understand movement of underground water. Human activities can have an impact on groundwater quality, and conducting tests in this field can help to track these effects. Leachate from landfill and fertiliser can both find their way into groundwater. It is important to monitor these pollutants and to test the quality of groundwater, as it helps to identify and mitigate potentially harmful conditions.

    By AQUAREAD Limited based in Broadstairs, UNITED KINGDOM.

  • Agricultural, Storm and Highway Runoff

    The ability to collect useful data about sediment transport and other pollutants closely coupled to SSC (such as nutrients, e-coli, phosphates and nitrates) is dependent on the timing and frequency of manual grab samples during run-off events. Most sediment and pollutant is transported during a small number of storm events which are infrequent and unpredictable. When they do occur, trained personnel or the proper equipment may not be available to collect grab samples. An automated pump sampler can eliminate the need to sample manually, but for the expense of a rechargeable power system, the autosampler, and possibly a datalogger and a typical turbidity probe, you’re no better off. With an automated pump sampler driven by the DTS-12 digital turbidity sensor and controlled by the Axiom H2 datalogger, you obtain a better understanding of the water’s quality, while taking a minimum number of samples, reducing site visits and saving lab analysis costs.

    By FTS based in Victoria, BRITISH COLUMBIA (CANADA).

  • Water intake protection monitoring for wastewater treatment industry

    Intake protection systems have been extensively installed to protect water treatment works, from ingress of polluted water and waste-water plants from toxic chemical loads. A suitable system typically comprises a suit of instrumentation, measuring key chemical, physical and indicator parameters dependant upon the identified risks, associated with the individual site activity or discharges from neighbouring industry.

    By Pollution & Process Monitoring Ltd based in Sevenoaks, UNITED KINGDOM.

  • Water measurement systems & sensors for flood warning

    Isodaq’s low-cost Isodaq telemetry data logger RTUs integrated with our telemetry data acquisition and alarm-message forwarding systems together provide the ideal solution for early warning of key events such as floods, pollution or CSO overflows.

    By Isodaq Technology - Hydro-Logic Group based in Bromyard, UNITED KINGDOM.

  • Airport Environmental Monitoring

    Water pollution from airport run-off is increasingly coming under public and government scrutiny. As environmental regulations tighten, the ability to monitor for aviation fuel contamination from runway run-off has become essential.

    Monitoring sites at airports can be extremely challenging often with no power or telephone lines available and with limited access for maintenance. Chelsea’s robust UviLux Hydrocarbon Sensor with its low power consumption and high accuracy is ideally suited for this application. Installed at various locations around the airport, deployed with it’s own integrated anti-biofouling system, utilising the GSM network, the monitoring sites send data to a secure ftp site, where any internet enabled device can access the data. In this way the systems act as any early warning system allowing any hydrocarbon discharge to be detected in real-time.

    Optional environmental monitoring features include remote control to allow the user to turn equipment on and off, change the sample rate and detection range. There is also a facility to allow SMS text and email alarm notifications triggered by user-defined set-points together with customised web pages, data displays and automated data downloads via an ftp server.

    Airport runoff can contain high concentrations of various pollutants, in particular polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), the environmental levels of which have to be monitored. An understanding of the magnitude of contamination due to airport runoff water is important for the effective management of airport infrastructure. Chelsea’s robust UviLux Hydrocarbon Sensor with its low power consumption and high accuracy is ideally suited to the airport environment.

    By Chelsea Technologies Group based in West Molesey, UNITED KINGDOM.

  • Monitoring of VOCs in Porewater

    Monitoring VOCs in porewater in the unsaturated zone is now possible.

    Sorbisense regularly offers new options for using the patented Sorbicell, which is used to monitor surface water, wastewater and groundwater.

    The latest is almost as “ground-breaking” as the SorbiCell itself. Until now it has been difficult, if not impossible, to directly monitor for volatile substances in pore water in the unsaturated zone. But the environmental consultancy firm Ejlskov A/S in Aarhus combined the use of Sorbisense sampling equipment with the proven technology of soil water samplers. With this combination, a practical new method is made available, which allows for monitoring the presence of porewater-dissolved VOCs above the groundwater table. This provides a significantly improved basis to define and determine the leaching risk to the groundwater, and thus allows for better and more cost-efficient decisions to prevent the pollution in reaching the groundwater.

    A simple construction with multiple options

    The application uses SorbiCell VOC combined with suction cells, soil water samplers. When installed correctly, and applied with the correct procedures, the suctions cells extract capillary bound water from the soil matrix. The system demands no other resource than a container that is put under vacuum. The vacuum in the container then ensures a flow through of the Sorbicell over a period of time, fx. 2-3 weeks. The method is highly suitable for monitoring a site over longer periods of time.

    By SORBISENSE based in Tjele, DENMARK.

  • Premium

    Water Testing for Environmental Applications

    Keeping the water in our lakes, rivers, and streams clean requires monitoring of water quality at many points as it gradually makes its way from its source to our oceans. Over the years ever increasing environmental concerns and regulations have heightened the need for increased diligence and tighter restrictions on wastewater quality. Control of water pollution was once concerned mainly with treating wastewater before it was discharged from a manufacturing facility into the nation`s waterways. Today, in many cases, there are restrictions on wastewater that is discharged to city sewer systems or to other publicly owned treatment facilities. Many jurisdictions even restrict or regulate the runoff of stormwater — affecting not only industrial and commercial land, but also residential properties as well.

    By Myron L Company based in Carlsbad, CALIFORNIA (USA).

  • Premium

    Wastewater Testing for the the Water Treatment Industry

    There are strict regulations in place surrounding waste water, which makes it very important to monitor. Even small changes in aquatic ecosystems can have a huge impact in the chemical makeup of water, temperature, etc. By using real time monitoring on water quality, pollutants can be detected and mitigated before they pose a potential threat to these ecosystems and enter the water course. The rugged AP-2000 allows for real time testing of wastewater and helps to minimise risk of any potential fines. It is works to protect the device and allow for other essential parameters to be tested. Because it is portable, it is easy to transport between locations, and you can also save money from onsite visits by getting instant data readouts using telemetry.

    By AQUAREAD Limited based in Broadstairs, UNITED KINGDOM.

  • Dye Tracing

    Monitoring the dilution and movement of a tracer introduced into the water column provides an excellent means of determining the path that may be followed by a discharge and the rate at which dilution is likely to take place. Fluorescent dyes such as Rhodamine, Fluorescein or Agma are the most frequently used tracers for such investigations. Chelsea Technologies has been providing dye tracing systems for over 30 years. Typical applications include sub-sea pipeline leak detection, pollution studies, natural water flow analysis (rivers, lakes, ocean currents, cave water flows, groundwater filtration etc), sewer and storm water drainage analysis. The Chelsea systems can be configured for a wide variety of tracers, are highly sensitive, robust, and deliver real-time data. They can be moored, profiled, towed or affixed to ROV / AUV platforms.

    By Chelsea Technologies Group based in West Molesey, UNITED KINGDOM.

  • Premium

    Water Testing for Textile Manufacturing

    The textile manufacturing industry encompasses many and diverse processes that rely heavily on the use of water, energy, chemicals, and other resources. Wet spinning, sizing, desizing, scouring, bleaching, mercerization, dyeing and printing are just a few. Monitoring and controlling the pH, TDS/Conductivity/Salt Concentration, ORP (REDOX), and Temperature of the aqueous solutions used in these processes conserves costly resources, controls quality, and reduces the amount of pollution that must be treated before discharge of effluent wastes. This can be done manually with handheld instruments or automatically with in-line monitor/controllers.

    By Myron L Company based in Carlsbad, CALIFORNIA (USA).

Need help finding the right suppliers? Try XPRT Sourcing. Let the XPRTs do the work for you