Only show results available in Virginia? Ok

wave monitoring Applications

  • SOILSPY

    With SoilSpy Rosina you can perform (depending on accessories): - Classic P and S wave prospection (refraction, reflection, tomography) - Surface wave prospection (SASW, MASW, ReMiTM, ESAC, SPAC, other spatial correlation methods of ambient noise or active signals) - In-hole surveys (downhole, crosshole)

    By MoHo - Science & Technology based in Marghera - Venezia , ITALY.

  • Premium

    Multiparameter Monitoring for the Renewable Energy Industry

    Site surveys for tidal, wave and wind based renewable energy projects will require instruments to measure standard physical parameters before, during and post installation.

    Fine tuning of the generating method is also reliant on data from sensor packages to maximise the source energy required for profitable installations.

    By Valeport Ltd based in Totnes, UNITED KINGDOM.

  • Percent Aromatics in Gasoline #3008

    The aromatic content of gasoline determines many of its combustion properties. Since it also impacts the environmental characteristics of the fuel it is desirable to have accurate measurements of this parameter. The traditional analytical method for measuring aromatics is either gas chromatography (GC) or an older method entitled fluorescent indicator adsorption (FIA), both of which are time and labor intensive. This note will discuss the use of Guided Wave hardware and software tools for the measurement of % aromatics in fuel products using fiber optic-based, Near-Infrared (NIR) spectroscopy. NIR can be applied in real time directly in process monitoring or as a laboratory procedure. In either case NIR is a time and money saving alternative to traditional methods. Request Application Note #3008

    By Guided Wave Inc, based in Rancho Cordova, CALIFORNIA (USA).

  • Cetane Number of Diesel Fuels #3010

    The Cetane number of a diesel fuel is a measure of the ignition properties and is an important specification that must be met during fuel production. The traditional laboratory method for Cetane number determination is the knock engine method in which the fuel is burned and its combustion characteristics compared to known standards. This method is time and labor intensive, and provides no ability for real time control of production. This note discusses the use of Guided Wave hardware and software tools for the measurement of Cetane number in diesel fuel using fiber optic-based, Near-Infrared (NIR) spectroscopy. NIR is applied in real-time directly in process monitoring or as a laboratory procedure. In either case NIR is a time and money saving alternative to traditional methods.

    By Guided Wave Inc, based in Rancho Cordova, CALIFORNIA (USA).

  • Octane Number of Gasoline using NIR Spectroscopy #3012

    When every second counts and performance is on the line Guided Wave's NIR analyzers allow for easy measurement of octane numbers in gasoline and refinery production units using fiber optic -based, near-infrared (NIR) spectroscopy. *Fast and reliable measurement of the octane number of gasoline (RON & MON). * Control gasoline production in real-time directly with in process monitoring. * Certify gasoline meets specification before release. *Gain significant improvements in process control. *Minimize the need for laboratory sample collection and the labor intensive "knock engine" method. The measurement of the octane number of gasoline using NIR spectroscopy is both fast and reliable utilizing Guided Wave analyzers. Results are available in real-time (seconds) for multiple parameters in complex streams. Request Application Note #3012

    By Guided Wave Inc, based in Rancho Cordova, CALIFORNIA (USA).

  • Hydroxyl Number in Polyols (OH#) #3013

    The use of polymeric polyols is commonplace in the manufacturing of polyurethanes and other specialty polymers. The hydroxyl number (OH#) is a measure of the concentration of the hydroxyl groups on the polyol. This is an important parameter to monitor and control during polyol production. The laboratory method that is commonplace for hydroxyl number determination is both time consuming and involves the use of hazardous materials. This note will discuss the use of Guided Wave hardware and software tools for the measurement of hydroxyl number in polyols using fiber optic-based, Near-Infrared (NIR) spectroscopy. NIR can be applied in real time directly in process or as a laboratory procedure. In either case NIR is a time and money saving alternative to traditional methods. NIR also offers the benefit of increased safety over traditional methods. For well established process measurements, a Guided Wave ClearView® db multi-wavelength photometer can be used to achieve similar results.

    By Guided Wave Inc, based in Rancho Cordova, CALIFORNIA (USA).

Need help finding the right suppliers? Try XPRT Sourcing. Let the XPRTs do the work for you