IWA Publishing

A comparison of electrochemical oxidation performance of PbO2 and SnO2 electrodes


Courtesy of IWA Publishing

PbO2 and SnO2 are two promising anode materials for electrochemical oxidation. In order to highlight the difference between two kinds of electrodes in an electrochemical oxidation process, their morphology, structural, oxygen evolution overpotential (OEP), electrochemical activity and service life-time were compared in detail in this paper. Surface characterization by scanning electron microscope shows that the film of the PbO2 electrode is even, compact, non-porous, and non-cracked, while many cracks are present on the film of the SnO2 electrode. Electrochemical studies based on linear sweep voltammetry (LSV) and cyclic voltammetry (CV) prove that the OEP for the SnO2 electrode was much higher than that of the PbO2 electrode, and the electron-transfer kinetics and the reversibility of electrode reaction of the SnO2 electrode were superior to those of the PbO2 electrode. In electrochemical decomposition of p-nitrophenol, the degradation ratios at PbO2 and SnO2 anodes achieved 86.9% and 96.5%, respectively, after 120 min electrolysis, which verified the results of LSV and CV. The accelerated lifetime tests show that the service life time of the SnO2 electrode is far shorter than that of the PbO2 electrode, even though it was shown to be superior to the PbO2 in electrocatalytic activity.

Customer comments

No comments were found for A comparison of electrochemical oxidation performance of PbO2 and SnO2 electrodes. Be the first to comment!