A laboratory-scale comparison of compost and sand—compost—perlite as methane-oxidizing biofilter media

0
Municipal solid waste landfills produce methane, a potent greenhouse gas. A treatment approach is to passively vent landfill gas through a methane-oxidizing biofilter medium, a porous substrate that facilitates the growth of methanotrophic bacteria. Two substrates, compost and a sand—compost—perlite (SCP) mixture, were evaluated in a laboratory-scale experiment for their suitability as biofilter media. The SCP mixture was investigated to minimize settlement and was based on a particle size distribution specification used for turf grass. The long-term (218 days) methane removal rates showed that both compost and SCP were capable of removing 100% of the methane influent flux (134 g CH4 m —2 day—1). The post-experiment analysis showed that compost had compacted more than SCP. This did not affect the results; however, in a field installation, traffic on the biofilter surface (e.g. maintenance) could cause further compaction and negatively affect performance. Exopolymeric substance produced by the methanotrophic bacteria, attributed by others for declining removal rates due to bio-clogging, was not observed to affect the results. The maximum exopolymeric substance values measured were 23.9 and 7.8 mg D-glucose g—1 (dry basis) for compost and SCP, respectively.

Customer comments

No comments were found for A laboratory-scale comparison of compost and sand—compost—perlite as methane-oxidizing biofilter media. Be the first to comment!