A Novel GATA Factor Transcriptionally Represses Yolk Protein Precursor Genes in the Mosquito Aedes aegypti via Interaction with the CtBP Corepressor

0
In anautogenous mosquitoes, vitellogenesis, the key event in egg maturation, requires a blood meal. Consequently, mosquitoes are vectors of many devastating human diseases. An important adaptation for anautogenicity is the previtellogenic arrest (the state of arrest) preventing the activation of the yolk protein precursor (YPP) genes Vg and VCP prior to blood feeding. A novel GATA factor (AaGATAr) that recognizes GATA binding motifs (WGATAR) in the upstream region of the YPP genes serves as a transcriptional repressor at the state of arrest. Importantly, AaGATAr can override the 20-hydroxyecdysone transactivation of YPP genes, and its transcriptional repression involves the recruitment of CtBP, one of the universal corepressors. AaGATAr transcript is present only in the adult female fat body. Furthermore, in nuclear extracts of previtellogenic fat bodies with transcriptionally repressed YPP genes, there is a GATA binding protein forming a band with mobility similar to that of AaGATAr. The specific repression of YPP genes by AaGATAr in the fat body of the female mosquito during the state of arrest represents an important molecular adaptation for anautogenicity.

 

Customer comments

No comments were found for A Novel GATA Factor Transcriptionally Represses Yolk Protein Precursor Genes in the Mosquito Aedes aegypti via Interaction with the CtBP Corepressor. Be the first to comment!