A waste load allocation method based on unfairness factors and its application in the Zhangweinan Watershed, northern China

0

A waste load allocation method was developed for industrial wastewater management based on unfairness factors, an industrial allocation factor and pollution reduction discounts. Three unfairness factors were defined to assess the relative efficiencies of energy consumption, pollution discharge and waste treatment costs for different industries. The overall effect of these factors was described by an industrial allocation factor. Based on the values of these factors, industries were classified into three types, after which waste load allocation proportions among different industries were determined using different pollution reduction discounts. This waste load allocation method was then applied in the Zhangweinan Watershed, which is one of the most seriously polluted watersheds in northern China. The results revealed that extractive, mechanical and food industries comprise the type I industries, which had the lowest pollution reduction discounts of 0, 0.25 and 0.5, respectively. The metallurgical industry and other industries were characterized as type II and discounts of 0.5 and 0.6 were given to their primary reductions. Textile, pharmaceutical, oil and pyrogenic, chemical and paper industries were classified as type III industries and had a waste load reduction of more than 80% of the pollution discharge in 2004.

Keywords: industrial wastewater, unfairness factor, waste load allocation, Zhangweinan Watershed

Customer comments

No comments were found for A waste load allocation method based on unfairness factors and its application in the Zhangweinan Watershed, northern China. Be the first to comment!