About Energy

- By:

Courtesy of

©2010 Florian Ion PETRESCU - Obtaining Energy by the Annihilation of an Electron with a Positron.

We can extract the energy of the rest mass of an electron. For a pair of an electron and a positron this energy is circa 1 MeV. The 'synchrotron radiation (synchrotron light source)' produces deliberated a radiation source. Electrons are accelerated to high speeds in several stages to achieve a final energy (that is typically in the GeV range). We need two synchrotrons, a synchrotron for electrons and another who accelerates positrons. The particles must to be collided, after they are being accelerated to an optimal energy level. All the energies are collected at the exit of the Synchrotrons, after the collision of the opposite particles. We will recover the accelerating energy, and in addition we also collect the rest energy of the electrons and positrons.

At a rate of 10^19 electrons/s we obtain an energy of about 7 GWh / year, if even are produced only half of the possible collisions. This high rate can be obtained with 60 pulses per minute and 10^19 electrons per pulse, or with 600 pulses per minute and 10^18 electrons per pulse. If we increase the flow rate of 1,000 times, we can have a power of about 7 TWh / year. This type of energy can be a complement of the fusion energy, and together they must replace the energy obtained by burning hydrocarbons.

Advantages of the annihilation of an electron with a positron, compared with the nuclear fission reactors, are disposal of radioactive waste, of the risk of explosion and of the chain reaction.

Energy from the rest mass of the electron is more easily controlled compared with the fusion reaction, cold or hot.

Now, we don't need of enriched radioactive fuel (as in nuclear fission case), by deuterium, lithium and of accelerated neutrons (like in the cold fusion), of huge temperatures and pressures (as in the hot fusion), etc.


Customer comments

No comments were found for About Energy. Be the first to comment!