Adsorption characteristics of Pb(II) from aqueous solutions onto a natural biosorbent, fallen arborvitae leaves

0

Courtesy of IWA Publishing

In this study, the potential of the oriental arborvitae leaves for the adsorption of Pb(II) from aqueous solutions was evaluated. Brunauer–Emmett–Teller analysis showed that the surface area of arborvitae leaves was 29.52 m2/g with pore diameter ranging from 2 to 50 nm. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy showed C—;C or C—;H, C—;O, and O—;C=O were the main groups on the arborvitae leaves, which were the main sites for surface complexation. Finally, effects of adsorbent dose, initial pH, contact time, and coexisting natural organic matters (humic acid (HA)) on the adsorption of Pb(II) were investigated. The results indicated that the pHZPC (adsorbents with zero point charge at this pH) was 5.3 and the adsorption reached equilibrium in 120 min. Isotherm simulations revealed that the natural arborvitae leaves exhibit effective adsorption for Pb(II) in aqueous solution, giving adsorptive affinity and capacity in an order of ‘no HA’ > 5 mg/L HA > 10 mg/L HA, and according to the Langmuir models, the maximum adsorptions of Pb(II) were 43.67 mg/g, 38.61 mg/g and 35.97 mg/g, respectively. The results demonstrated that the oriental arborvitae leaves showed high potentials for the adsorption of Pb(II) from aqueous solutions.

Customer comments

No comments were found for Adsorption characteristics of Pb(II) from aqueous solutions onto a natural biosorbent, fallen arborvitae leaves. Be the first to comment!