IWA Publishing

Adsorption of fluoride from aqueous solution using low cost adsorbent


High fluoride levels beyond the recommended value of 1.5 mg/L have been detected in several groundwater wells in Northern Ghana. This occurrence has led to the capping of many high yielding wells that hitherto have been major sources of drinking water for the populace in these arid areas. Most of the fluoride removal technologies applied in the area has not been versatile in effectively removing fluoride because of the varying water qualities. This study focused on screening adsorbents including high aluminium or iron containing bauxite ores, fabricated zeolite and activated Neem seeds for removal of fluoride from drinking water. The model water used was prepared by simulating the prevailing groundwater quality in Northern Ghana. The high aluminium bauxite ore (HABO) had the highest fluoride removal capacity. Within the pH range tested (5–7), the fluoride removal decreased with increasing pH. Occurrence of sulfate, chloride and nitrate in the model water reduced the fluoride removal capacity by 57, 24 and 38% respectively. The combined effect of these anions showed a 60% reduction in the fluoride removal capacity. The Freundlich and Langmuir isotherms gave an adsorption capacity (K) of 0.90 mg/g for the HABO. The adsorption kinetics fitted well the pseudo second-order kinetic model. The HABO is thermally stable and has kaolinite [Al2Si2O5(OH)5] and gibbsite [Al(OH)3] as its major components. X-ray fluorescence (XRF) and energy dispersive X-ray (EDX) results showed Al, Fe, Ti, O, C and Si as the predominant elements in the HABO.

Customer comments

No comments were found for Adsorption of fluoride from aqueous solution using low cost adsorbent. Be the first to comment!