Application of the central composite design for condition optimization for semi-aerobic landfill leachate treatment using electrochemical oxidation

0

In the present study, Electrochemical Oxidation was used to remove COD and color from semi-aerobic landfill leachate collected from Pulau Burung Landfill Site (PBLS), Penang, Malaysia. Experiments were conducted in a batch laboratory-scale system in the presence of NaCl as electrolyte and aluminum electrodes. Central composite design (CCD) under Response surface methodology (RSM) was applied to optimize the electrochemical oxidation process conditions using chemical oxygen demand (COD) and color removals as responses, and the electrolyte concentrations, current density and reaction time as control factors. Analysis of variance (ANOVA) showed good coefficient of determination (R2) values of <0.98, thus ensuring satisfactory fitting of the second-order regression model with the experimental data. In un-optimized condition, maximum removals for COD (48.77%) and color (58.21%) were achieved at current density 80 mA/cm2, electrolyte concentration 3,000 mg/L and reaction time 240 min. While after optimization at current density 75 mA/cm2, electrolyte concentration 2,000 mg/L and reaction time 218 min a maximum of 49.33 and 59.24% removals were observed for COD and color respectively.

Keywords: COD, color, electrochemical oxidation, response surface methodology, semi-aerobic leachate

Customer comments

No comments were found for Application of the central composite design for condition optimization for semi-aerobic landfill leachate treatment using electrochemical oxidation. Be the first to comment!