Balancing water demand reduction and rainfall runoff minimisation: modelling green roofs, rainwater harvesting and greywater reuse systems

0
- By: ,

Courtesy of IWA Publishing

Recent years have seen a growing interest in more distributed approaches towards stormwater management, often integrated with other forms of distributed management of urban water such as water demand management technologies. This paper focuses on the role of green roofs (GR), rainwater harvesting (RWH) and greywater reuse and their integration at the building level. A number of models were developed to simulate these systems, and provide design curves able to simultaneously minimise both total runoff volumes and the amount of potable water used in the building (for irrigation and toilet flushing). The models developed were applied to the design of stormwater infrastructure for the building of the National Gallery, in Athens, Greece. A sensitivity analysis of various model parameters was conducted, with results suggesting, inter alia: (i) a significant decrease of total runoff volumes for rainfalls of medium-to-small return periods; (ii) a significant influence of the plant factor on water requirements (with implications for selecting vegetation for GR in a Mediterranean climate); and (iii) a significant impact of latent heat peaking during the months of June and July. The trade-off, on runoff volumes, between percentage of green roof area and the dimensions of the water storage tank was also investigated. The results suggest that the most preferable solution for conserving potable water was RWH combined with greywater recycling, while for runoff minimisation the best option was the combination of green roof and greywater recycling.

Customer comments

No comments were found for Balancing water demand reduction and rainfall runoff minimisation: modelling green roofs, rainwater harvesting and greywater reuse systems. Be the first to comment!