IWA Publishing

Bioremediation of synthetic fatliquors under microaerobic condition


Courtesy of IWA Publishing

Synthetic fatliquors are useful as a fatliquoring agent, flotation agent and emulsifying agent in a wide range of industrial applications such as leather, pharmacy and farm chemicals. These fatliquors remain recalcitrant to natural biota in existing treatment plants. In the present study, the isolated microaerophilic Serratia sp. HA1 strain CSMB3 is capable of utilizing structurally different fatliquors as the sole substrate for their growth under microaerobic conditions. Degradation of vegetable fatliquors was observed from 95 to 97% in terms of lipids, with the production of lipase at 72 h. Degradation of synthetic fatliquors was observed in terms of chemical oxygen demand from 85% to a minimum of 25%. It is in the order of sulfited/sulfated fatliquors > sulfochlorinated fatliquors > chlorinated fatliquors. A thin layer chromatography chromatogram confirmed the degradation of non polar fatliquor to polar compounds. Production of the red pigment prodigiosin in synthetic fatliquors enhanced the growth of the isolate. Fourier transform infrared spectroscopy (FTIR) confirmed the bioremediation of sulfochlorinated fatliquor into lipids and fatty acids and gas chromatography–mass spectrometry (GC-MS) results confirmed that alcohols and esters are the final end products. Thus the isolated strain CSMB3 may be used in the treatment of wastewaters containing vegetable and synthetic fatliquors.

Customer comments

No comments were found for Bioremediation of synthetic fatliquors under microaerobic condition. Be the first to comment!