Springer

Carbonization of johkasou sludge using batch-type equipment

0
The carbonization of dehydrated johkasou sludge was examined using batch-type equipment. Based on the temperature changes in the carbonization room and the gas combustion room, the carbonization process was divided into three phases: phase I, drying the sludge, phase II, thermal decomposition of the dried sludge, phase III, after phase II. The times required for phases I and II were strongly correlated with the amounts of water and solid matter, respectively, in dehydrated sludge. The reduction rate of the sludge on completion of phase I was about 90% on average, and the decomposition rate of solid matter increased with time during phase II or phase II plus phase III until it reached about 50%. TOC concentration of the eluate from the carbonized sludge was used as an index to evaluate the progress of the carbonization process, and the highest temperature in the carbonization room was recognized as an important operational factor. The specific surface area and pore volume of carbonized sludge were smaller than those of charcoals and activated carbons by 1–3 orders of magnitude and 1–2 orders of magnitude, respectively. No elution of heavy metals was observed from any of the carbonized sludges examined. The reduced amount of carbon in dehydrated johkasou sludge was estimated to be about 25% of the decomposed organic matter.

Customer comments

No comments were found for Carbonization of johkasou sludge using batch-type equipment. Be the first to comment!