Clarification of algae-laden water using electrochemical processes


Courtesy of IWA Publishing

Algae contamination of surface water and drinking water supplies is a significant problem particularly in rural areas. A decentralized inexpensive technology that would effectively remove algae from water would be beneficial. Electrocoagulation (EC) combined with electroflotation (EF) as a single process (ECF) is a promising algae harvesting technique with no moving parts that may be powered using a modest array of photovoltaic panels if a low power system can be developed. Here, an ECF system was constructed to study the energy required to remove algae from a simulated drinking water supply. Results from 18 ECF experiments indicated a >95% improvement of water clarity measured by optical density (OD750) could be achieved with as little energy as 1.25 kWh m−3. The key was to find the ideal combination of gas bubbles produced by EF (G) and coagulant from the EC relative to the concentration of suspended solids (S). The ideal gas to solids (G/S) ratio for the ECF system ranged from 0.09 to 0.17. In solutions containing chloride (Cl) ions ECF produced chlorine gas which is known to contribute to disinfection. Results suggest that ECF can efficiently remove algae and simultaneously contribute to disinfecting contaminated drinking water supplies.

Customer comments

No comments were found for Clarification of algae-laden water using electrochemical processes. Be the first to comment!