E-guide for Measuring TAN and TBN in Oil

0

Courtesy of Spectro Scientific

Monitoring TAN and TBN is an important test for measuring lubricant condition. There are several methods available ranging from expensive laboratory methods to quick field tests. In a laboratory setting, methods are chosen based on the highest accuracy and repeatability that can be achieved with a decent throughput. Out in the field, it is most important to get a trustworthy result quickly enough that preventative or corrective maintenance action can be taken before major equipment failure. The best method to use depends on the application need.

TOTAL ACID NUMBER

A high concentration of acidic compounds in a lubricant can lead to corrosion of machine parts and clogged oil filters due to the formation of varnish and sludge. When a lubricant breaks down, acidic by-products will be formed from the chemical decomposition of the base stock and additives in the presence of air and heat. Total Acid Number (TAN) is a measure of acid concentration present in a lubricant. The acid concentration of a lubricant depends on the presence of additive package, acidic contamination, and oxidation by-products. Occasionally, the depletion of an additive package may cause an initial decrease in TAN of fresh oil. However, the accumulation of oxidation by-products and acidic contaminants in an oil over time will always lead to an increase in TAN. This test is most meaningful in industrial machinery applications although sometimes it is recommended in engine applications along with Total Base Number (TBN).

TOTAL BASE NUMBER

Total Base Number (TBN) is a measure of alkaline concentration present in a lubricant. Engine oils are formulated with alkaline additives in order to combat the build-up of acids in a lubricant as it breaks down. The TBN level in a lubricant is targeted for its application. Gasoline engine oils are typically formulated with starting TBN around 5-10 mg KOH/g whereas diesel engine oils tend to be higher (15-30 mg KOH/g) due to the more severe operating conditions. Specialized applications, such as marine engines, may require >30 mg KOH/g. As the oil remains in service, this BN additive is depleted. Once the alkaline additives are depleted beyond a certain limit the lubricant no longer performs its function, and the engine is at risk of corrosion, sludge, and varnish. At this point it is necessary to top-off or change the oil.

Monitoring TAN and TBN is an important test for measuring lubricant condition. There are several methods available ranging from expensive laboratory methods to quick field tests. In a laboratory setting, methods are chosen based on the highest accuracy and repeatability that can be achieved with a decent throughput. Out in the field, it is most important to get a trustworthy result quickly enough that preventative or corrective maintenance action can be taken before major equipment failure. The best method to use depends on the application need.

To learn more click here

Customer comments

No comments were found for E-guide for Measuring TAN and TBN in Oil. Be the first to comment!