Electricity generation in low cost microbial fuel cell made up of earthenware of different thickness

0
- By: ,

Courtesy of IWA Publishing

Performance of four microbial fuel cells (MFC-1, MFC-2, MFC-3 and MFC-4) made up of earthen pots with wall thicknesses of 3, 5, 7 and 8.5 mm, respectively, was evaluated. The MFCs were operated in fed batch mode with synthetic wastewater having sucrose as the carbon source. The power generation decreased with increase in the thickness of the earthen pot which was used to make the anode chamber. MFC-1 generated highest sustainable power density of 24.32 mW/m2 and volumetric power of 1.04 W/m3 (1.91 mA, 0.191 V) at 100 Ω external resistance. The maximum Coulombic efficiencies obtained in MFC-1, MFC-2, MFC-3 and MFC-4 were 7.7, 7.1, 6.8 and 6.1%, respectively. The oxygen mass transfer and oxygen diffusion coefficients measured for earthen plate of 3 mm thickness were 1.79 × 10−5 and 5.38 × 10−6 cm2/s, respectively, which implies that earthen plate is permeable to oxygen as other polymeric membranes. The internal resistance increased with increase in thickness of the earthen pot MFCs. The thickness of the earthen material affected the overall performance of MFCs.

Keywords: coulombic efficiency, earthen pot MFC, oxygen diffusion coefficient, power density, wastewater treatment

Customer comments

No comments were found for Electricity generation in low cost microbial fuel cell made up of earthenware of different thickness. Be the first to comment!