Enhanced removal of Hg(II) from acidic aqueous solution using thiol-functionalized biomass

0

Spent grain, the low-cost and abundant biomass produced in the brewing industry, was functionalized with thiol groups to be used as an adsorbent for Hg(II) removal from acidic aqueous solution. The adsorbents were characterized by the energy-dispersive X-ray analysis (EDAX) and Fourier transform infrared (FTIR) spectroscopy. Optimum pH for Hg(II) adsorption onto the thiol-functionalized spent grain (TFSG) was 2.0. The equilibrium and kinetics of the adsorption of Hg(II) onto TFSG from acidic aqueous solution were investigated. From the Langmuir isotherm model the maximum adsorption capacity of TFSG for Hg(II) was found to be 221.73 mg g−1, which was higher than that of most various adsorbents reported in literature. Moreover, the adsorption of Hg(II) onto TFSG followed pseudo-second-order kinetic model.

Keywords: adsorption, equilibrium, Hg(II), kinetics, thiol-functionalized spent grain

Customer comments

No comments were found for Enhanced removal of Hg(II) from acidic aqueous solution using thiol-functionalized biomass. Be the first to comment!