Nucleic acid (dna, rna) quantification and rna/dna ratio determination in marine sediments: comparison of spectrophotometric, fluorometric, and highperformance liquid chromatography methods and estimation of detrital dna

0

In this study, we compared three methods for extraction and quantification of RNA and DNA from marine sediments: (i) a spectrophotometric method using the diphenylamine assay; (ii) a fluorometric method utilizing selective fluorochromes (thiazole orange for total nucleic acids and Hoechst 33258 for DNA); and (iii) a high-pressure liquid chromatography (HPLC) method which uses a specific column to separate RNA and DNA and UV absorption of the nucleic acids for quantification. Sediment samples were collected in the oligotrophic Cretan Sea (eastern Mediterranean, from 40 to 1,540 m in depth) and compared to the distribution and composition of the benthic microbial assemblages (i.e., bacteria and microprotozoa). DNA concentrations measured spectrophotometrically and by HPLC were not significantly different, while fluorometric yields were significantly lower. Such differences appear mainly due to fact that the stain-DNA complex is strongly dependent on the DNA composition and structure. RNA concentrations determined by the three methods displayed some differences; fluorometric and spectrophotometric methods obtain RNA concentration by difference and therefore may be biased by DNA estimates. By contrast, the HPLC method provides independent assessments of RNA and DNA concentrations. We tentatively estimated the contribution of the detrital DNA to the total DNA pools in two ways. The two calculations provided quite similar results indicating that the majority of the DNA pool in the deep-sea sediments was detrital. Microbial RNA generally accounted for almost the entire sedimentary RNA pools below 100-m depth. RNA concentrations were found to decrease along the Cretan shelf and slope. The RNA/DNA ratio calculated by using fluorometric DNA concentrations was significantly correlated with values of sediment community oxygen consumption only below 100-m depth (dominated by the microbial biomass). These data suggest that the RNA/DNA ratio, based on fluorometric estimates of DNA, can be used as an indicator of benthic metabolic activity, but only when metazoan contribution to the microbial DNA is negligible.

Customer comments

No comments were found for Nucleic acid (dna, rna) quantification and rna/dna ratio determination in marine sediments: comparison of spectrophotometric, fluorometric, and highperformance liquid chromatography methods and estimation of detrital dna. Be the first to comment!