IWA Publishing

Optimization of adsorption process parameters by response surface methodology for hexavalent chromium removal from aqueous solutions using Annona reticulata Linn peel microparticles

0

Courtesy of IWA Publishing

Fruit peel microparticles of Annona reticulata Linn were used as biosorbent for the sequestration of hexavalent chromium (CR(VI)). Characterization of the biosorbent was done using scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDXS), Fourier transfer infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GCMS), carbon, hydrogen, nitrogen and sulphur (CHNS) elemental analysis, mercury intrusion porosimetry and point of zero charge. Influential parameters were optimized using response surface methodology (RSM) with a total of 17 experimental runs based on the Box-Behnken design and found to be pH 1.0, temperature 25 °C and 100 mg/L initial chromium concentration. pH and concentration were found to be more influential than temperature. The analysis of variance indicated that a second-order polynomial regression equation was the most suitable for fitting the experimental data. The experimental runs showed a good correlation with the predicted responses (R2 = 0.9956). The biosorption process fitted well with the Langmuir isotherm with an adsorption capacity of 108. 32 mg/g out of the other isotherms such as Freundlich and Dubinin-Radushkevich that were analyzed. Non linear pseudo first order, pseudo second order, and intraparticle diffusion kinetics were applied to describe the interaction between the biosorbent and Cr(VI). Desorption and regeneration performances showed that fruit peels of Annona reticulata Linn can be an environmental friendly option for hexavalent chromium removal from aqueous solutions.

Customer comments

No comments were found for Optimization of adsorption process parameters by response surface methodology for hexavalent chromium removal from aqueous solutions using Annona reticulata Linn peel microparticles. Be the first to comment!