Springer

Persistence and impact on microorganisms of Bacillus thuringiensis proteins in some Zimbabwean soils

0
- By: , ,

Courtesy of Springer

The persistence of the Bacillus thuringiensis subsp. kurstaki (Btk) toxin (Cry1Ab protein) from Bt maize (MON810, Yieldgard®) residues incorporated in a vertisol (739 g clay kg–1) was investigated. The maize residues were incubated in the soil for 4 weeks, and activity of the toxin in the residues was bioassayed using larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Corrected mortality of P. xylostella in the bioassays decreased from 76% to 30% in less than a week of incubation in the soil. In addition to the above observations, the effects of Btk, Bt subsp. israelensis (Bti), and Bt subsp. tenebrionis (Btt) proteins on the soil microbiota were examined using a vertisol, an alfisol, and an oxisol. The pre-incubated soils (7 days after moisture adjustment) were treated with crystal proteins of Btk, Bti, and Btt and incubated for further a 7-day period. Microbial biomass carbon (MBC) and counts of culturable bacteria and fungi were determined. The proteins did not show effects on MBC or bacterial and fungal counts, possibly as a result of adsorption of the proteins on soil particles, which could have rendered the proteins inaccessible for microbial utilization. Microbial biomass carbon and counts arranged in decreasing order were vertisol>oxisol>alfisol, similar to the amounts of organic C and clay in the soils. However, bacteria and fungi counts were higher in the vertisol than in the alfisol and the oxisol soils. Our observations suggest that larvicidal proteins produced by different subspecies of Bt and Bt maize could persist in tropical soils as a result of adsorption on soil clays but that there were no observable effect on the soil microbiota.

Customer comments

No comments were found for Persistence and impact on microorganisms of Bacillus thuringiensis proteins in some Zimbabwean soils. Be the first to comment!