Pesticide Impact Rating Index – A Pesticide Risk Indicator for Water Quality

- By: ,

Courtesy of Courtesy of Springer

Pesticide users, natural resource managers, regulators, government agencies and many others are concerned about the off-site impact of pesticides on the environment. Systematic methods of the assessment of potential risk of pesticides to environmental components can serve as valuable tools in decision making and policy formulation. Simple risk indicators have been developed which cover a range of scenarios such as toxicity to organisms, health of farm workers, consumer health, and residues in harvested produce. The authors have developed a software package named Pesticide Impact Rating Index (PIRI) that outputs an improved pesticide risk indicator for water quality. PIRI is a standalone, user-friendly, platform-independent program. It can be used to (i) rank pesticides in terms of their relative pollution potential to groundwater or surface water, and (ii) to compare different land uses in a catchment or at a regional scale in terms of their relative impact on water quality. It is based on pesticides use; the pathway through which the pesticides are released to the water resources (drift, runoff, erosion, leaching) and the value of the water resources threatened. Each component is quantified using pesticide characteristics (including toxicity to organisms at different trophic levels, i.e. fish, daphnia, algae, etc.), environmental and site conditions (e.g. organic carbon content of soil, water input, slope of land, soil loss, recharge rate, depth of water table, etc.).

This paper describes two case studies of the application of PIRI in Australia. The comparison of the risk assessment by PIRI on these revealed that PIRI correctly estimated the pollution potential of pesticides in greater than 80% of cases. A GIS version of PIRI is described in a companion paper in this volume.

Customer comments

No comments were found for Pesticide Impact Rating Index – A Pesticide Risk Indicator for Water Quality. Be the first to comment!