Pilot-scale study of powdered activated carbon recirculation for micropollutant removal

0

Courtesy of IWA Publishing

Adsorption onto powdered activated carbon (PAC) is a promising technique for the removal of organic micropollutants (OMPs) from treated wastewater. To enhance the adsorption efficiency, PAC is recycled back into the adsorption stage. This technique was examined in pilot scale in comparison to a reference without recirculation. Coagulation with Fe3+ was carried out simultaneously to adsorption. Extensive OMP measurements showed that recirculation significantly increased OMP eliminations. Thus, significant PAC savings were feasible. The PAC concentration in the contact reactor proved to be an important operating parameter that can be surrogated by the easily measurable total suspended solids (TSS) concentration. OMP eliminations increased with increasing TSS concentrations. At 20 mg PAC L−1 and 2.8 g TSS L−1 in the contact reactor, well-adsorbable carbamazepine was eliminated by 97%, moderately adsorbable diclofenac was eliminated by 92% and poorly-adsorbable acesulfame was eliminated by 54% in comparison to 49%, 35% and 18%, respectively, without recirculation. The recirculation system represents an efficient technique, as the PAC's adsorption capacity is practically completely used. Small PAC dosages yield high OMP eliminations. Poorly-adsorbable gabapentin was eliminated to an unexpectedly high degree. A laboratory-scale biomass inhibition study showed that aerobic biodegradation removed gabapentin in addition to adsorption.

Customer comments

No comments were found for Pilot-scale study of powdered activated carbon recirculation for micropollutant removal. Be the first to comment!