John Wiley & Sons, Ltd.

Potentiating toxicological interaction of single‐walled carbon nanotubes with dissolved metals

0
The present study explores the ecotoxicology of single‐walled carbon nanotubes (SWCNTs) and their likely interaction with dissolved metals, with a focus on the effect of in vivo exposure in marine mussels. Any nano‐scale effects were negated by the tendency of uncoated SWCNTs to agglomerate in water, particularly with high ionic strength as is the case in estuarine and full strength seawater. However, SWCNTs, in combination with natural organic matter, remained suspended in seawater for long enough to become available to filter‐feeding mussels, leading to their concentration on and increased contact with gill epithelia during exposure. Here, for the first time, we describe a potentiating toxicological effect, expressed as DNA strand breaks obtained using the Comet assay, on divalent metals afforded by negatively charged SWCNT agglomerates in seawater at concentrations as low as 5 µgL−1. This is supported by the observation that SWCNT alone were only toxic at concentrations ≥100 µgL−1, and that the SWCNT‐induced DNA damage was correlated with oxidative stress only in the absence of metals. If these laboratory experiments are confirmed in the natural environment, these results will have implications for the understanding of the role of carbon nanotubes in environmental metal dynamics, and toxicology, and consequently, regulatory requirements. Environ Toxicol Chem © 2013 SETAC

Customer comments

No comments were found for Potentiating toxicological interaction of single‐walled carbon nanotubes with dissolved metals. Be the first to comment!