Preparation of a fouling-resistant sustainable cathode for a single-chambered microbial fuel cell

0
- By: ,

Courtesy of IWA Publishing

Two different binder materials of varying water affinity, viz. poly vinyl alcohol (PVA) and poly-tetrafluoroethylene (PTFE), and biocide vanillin were tested for cathode fouling in a single chamber air-cathode microbial fuel cell (MFC) constructed with a low-cost baked clayware cylinder and operated under fed-batch mode. PVA and PTFE loadings of 0.5 mg/cm2 were used for MFC-1 and MFC-2, respectively as a binder; and a 1:1 mixture of PVA + PTFE was used as binder in MFC-3 with same binder loading. Vanillin was mixed with PVA and also applied at a loading of 0.5 mg/cm2 for MFC-4. Results showed organic matter removal efficiencies around 90% for all MFCs both before and after fouling. Coulombic efficiency was, however, found to decrease 50% after fouling in the MFC-3 coated with both PVA and PTFE. After 5 weeks of operation, due to fouling 56, 40 and 69% reduction in power densities were observed in MFC-1, MFC-2 and MFC-3, respectively. In the MFC-4 having PVA and vanillin, the least fouling was observed. A consistent volumetric power of 233 mW/m3 was observed for MFC-4, thus potentially offering a suitable solution to alleviate the problem of fouling in the making of single-chamber air-cathode MFCs.

Customer comments

No comments were found for Preparation of a fouling-resistant sustainable cathode for a single-chambered microbial fuel cell. Be the first to comment!