Probabilistic modelling and evaluation of wastewater treatment plant upgrades in a water quality based evaluation context

0

Process choice and dimensioning of wastewater treatment plants (WWTPs) is difficult while ensuring regulatory standards are met and cost-efficiency is maintained. This step only accounts for a small fraction of the upfront costs, but can lead to substantial savings. This paper illustrates the results of a systematic methodology to evaluate system upgrade options by means of dynamic modelling. In contrast to conventional practice, the presented approach allows the most appropriate trade-off between cost of measures and effluent quality to be chosen and the reliability of a process layout to be assessed by means of uncertainty analysis. In a hypothetical case study, thirteen WWTP upgrade options are compared in terms of their effluent quality and economic performance. A further comparison of two options with regard to the resulting receiving water quality reveals the paramount importance of this aspect, and highlights the inadequacy of evaluation frameworks limited to the performance relative to a sub-system (WWTP effluent) when a wider perspective (as induced by the EU Water Framework Directive) has to be adopted.

Keywords: cost efficiency, integrated modelling, probabilistic design, uncertainty assessment, Water Framework Directive, water quality

Customer comments

No comments were found for Probabilistic modelling and evaluation of wastewater treatment plant upgrades in a water quality based evaluation context. Be the first to comment!