Reduction of highly concentrated phosphate from aqueous solution using pectin-nanoscale zerovalent iron (PNZVI)

0

Courtesy of IWA Publishing

Pectin-nanoscale zerovalent iron (PNZVI) has been studied as an effective phosphate adsorption material to remove highly concentrated phosphate from aqueous solution. Batch phosphate removal and equilibrium experiments were conducted in order to evaluate the effects of environmental factors such as pH, coexisting anions and ionic strengths on phosphate removal by PNZVI. The scanning electron microscope images of nanoscale zerovalent iron (NZVI) and PNZVI demonstrated that PNZVI exhibited larger specific surface areas than NZVI so that PNZVI had higher phosphate removal efficiency than NZVI. Equilibrium experiments showed that phosphate adsorption by PNZVI was well fitted with the Freundlich and Langmuir models. In addition, the maximum adsorption capacity reached 277.38 mgP/gPNZVI. The ionic strengths and common anions showed no significant effects on the process of phosphate adsorption by PNZVI. The phosphate removal efficiency increased to a peak value with pH increased from 2.0 to 5.0, then decreased with pH further increased from 5.0 to 10.0. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses of PNZVI and P-loaded PNZVI indicated that adsorption, rather than redox reaction, was the dominant mechanism for the removal of phosphate by PNZVI.

Customer comments

No comments were found for Reduction of highly concentrated phosphate from aqueous solution using pectin-nanoscale zerovalent iron (PNZVI). Be the first to comment!