Springer

Relationship of chemical fractions of heavy metals with microbial and enzyme activities in sludge and ash-amended acid lateritic soil from India

0
- By: , ,

Courtesy of Springer

The influence of metals, Cd, Cr, Cu, Ni, Pb and Zn, on the microbial biomass and enzyme activities of an amended acid lateritic soil were investigated under field conditions receiving a one-time application of 52 t ha–1 of sludge, coal ash and their mixtures at 1:3, 1:1 and 3:1 proportions, and including control and chemical fertilizer treatment at crop-specific recommended doses. Paddies and peanuts were grown in the experimental plots and soil was sampled twice after 6 months and 1 year after amendment application. The heavy metals in the soil were fractionated using sequential extraction and the increments in their concentrations in amended soil with respect to the control were determined. Concentrations of Cd, Ni and Zn were determined to have increased in their mobile fractions and were more pronounced in soil collected during the second sampling, which was associated with a decrease in soil organic carbon. The size of the microbial biomass carbon and the soil enzyme activities increased with the addition of an amendment and was highest at equal proportions of coal ash and sludge. Further increase in the proportion of sludge resulted in a significant decrease in biomass carbon. Simple correlation revealed significant and strong negative relations of mobile fractions of Cd and Ni with the ratio between microbial biomass C and organic carbon in soil, while the organic carbon content and the pH were positively correlated. The microbial activities were determined to be sensitive to the concentrations of some heavy metals in mobile fractions and therefore indicated possibilities of being useful as indicators for evaluation of toxic effects of sludge-borne metals on soil organisms.

Customer comments

No comments were found for Relationship of chemical fractions of heavy metals with microbial and enzyme activities in sludge and ash-amended acid lateritic soil from India. Be the first to comment!