Renewing Belgrade’s Water Infrastructure


Courtesy of Innovyze

After the trauma of the 1990s, new foreign and national investments in Belgrade’s water infrastructure is enabling the city to benefit from the latest advances in water supply technology…


Situated on the banks of the rivers Sava and Danube, the citizens of Belgrade, the capital city of Serbia and Montenegro in the Balkans, have long benefited from ready access to water. Rapid development after the Second World War led to the city spanning across the left bank of the Sava River with the development of an urban settlement called Novi (New) Beograd. The city’s southern expansion took a different shape, culminating during the last decade with the establishment of hundreds of illegal settlements and private houses destroying the last traces of urban planning. Today the city population exceeds 1.5m people.

In the past 110 years, the population of Belgrade has increased 25 times and yet the quantity of water distributed has increased 110 times. This is testament to the quality of the city’s infrastructure engineering and the commitment shown to utility investments at various stages of the city’s history. The Belgrade Waterworks and Sewerage Company was founded in 1892 and the city’s original distribution system was designed by Oscar Smreker, an engineer from Mannheim. Smreker’s combined spring and Sava River water distribution system supplied water direct from the city’s reservoirs to the consumer and the Belgrade Waterworks became widely recognized throughout Europe as one of the leading utilities of its day... However this was followed by years of under-investment and the turbulence of the 1990s, and the city’s water supply system rapidly decayed. But today it is benefiting from sustained foreign donations (Federal Republic of Germany) and from increased investments by the city authorities (a combined total in excess of €30m since 1999). The company now annually supplies 250 million m3 of potable water.

Water supply

Belgrade’s water supply is based on the treatment of raw ground water, primarily from the River Sava but also a little from the Danube. 60% of this water is collected by a system of vertical and horizontal drains. The maximum capacity of the ground water source area and has been steadily dropping; reminding us that source water is not just a technical water catchment facility but also a natural environment to be protected. In 1960 there were only six wells with an average capacity of 182 l/s. In 2000 there were 99 with an average capacity of just 42 l/s.

The city’s water supply system consists of 200 km of raw water pipeline, 142 wells, 28 storage tanks, 26 pumping stations and 7 water plants. Raw ground water is treated in three treatment plants - Bezanija (3,200 l/s), Banovo brdo (4,200 l/s) and Bele vode (600 l/s). Raw surface water taken from the River Sava is treated in four water treatment plants Makis (2,000 l/s), Jezero (1,000 l/s), Bele vode (500 l/s) and Vinca (80 l/s). Belgrade’s 21 zone reservoirs (water storage tanks) represent one third of the city’s daily consumption, and substantial parts of the city are not fed by reservoirs at all. This places a substantial additional load on the city’s pumping stations.

Water distribution

Given the city’s topology, Belgrade is divided into four pressure zones. The first zone is located 75 - 125 meters above the sea level, while each subsequent zone 50m higher still. The water storage tanks for each zone are located 20-25m above, and they also act as the draining points for the pumping stations of higher zones. The highest tank is located 300m above sea level.

Built in 1961, a hydrotechnical tunnel (1.8m diameter) connects the Banovo brdo Water treatment plant with the city’s central areas. This tunnel carries more than 50% of the total water supply for Belgrade. It runs through three Belgrade hills (Banovo brdo topcidersko brdo and vracarsko brdo), with several main pumping stations along its route (Topcider (1,2 zone), Vracar(1,2 zone) and Tasmajdan ( The tunnel’s capacity of 4,400 liters per second is crucial to providing the city with a regular water supply, and its viability has been threatened by under-investment since 1990. It is one of the best examples of vision and planning, for without the tunnel Belgrade citizens would have suffered water shortages throughout the 90’s.

The city’s water distribution system consists of 2,500 km of pipe, 14,000 hydrants and 12,000 valves. 62% of the network was built in the past 25 years, a further 23% is up to 50 years old and 15% is up to 100 years old. The old age and poor condition of the network, accounts for frequent leakages and failures in the distribution system.

Early modeling

Belgrade Waterworks has long recognized the importance of understanding network performance through mathematical modeling and applying this knowledge to the development of infrastructure plans.

The mathematical modeling of Belgrade’s water supply and distribution network dates back to the mid 1970s with the development of a mainframe based VDS mathematical model. Used mainly in planning and design, this manual, tabular based model offered no graphical representation of network behavior. The model was calibrated according to reservoir water levels. The model contained Q-H (flow) characteristics of every pump in the pumping stations.

In the mid 1980s this manual model was transferred to a PC with a separate model for each pressure zone. By 1990, modeling had evolved further with Wallingford’s early software product WESNET providing an integrated model covering both raw water supply and the distribution network. The model shown here (insert slide 15 from ppt) illustrates what could be achieved with the final version of WESNET. The whole model is displayed but with poor graphics and layer control. Simulation results were saved only for specified nodes and links.

Rehabilitation and reconstruction

The primary objective of the current renewal and investment strategy is the rehabilitation and reconstruction of the city’s network with an emphasis on loss reduction and improved efficiency. To help achieve this, the company decided that it would be beneficial to invest in an advanced hydraulic modeling software system and this led directly to the acquisition of InfoWorks WS from Wallingford Software.

Once the existing WESNET models were imported into InfoWorks, Belgrade Waterworks began the process of refining the new models, taking full advantage of the additional functionality and graphical capabilities of InfoWorks. Scanned images and background map images were integrated into the models and live data from pressure and flow loggers incorporated. The company now has a very useful strategic model of the water supply network comprising 540 nodes, 740 links, all the city’s reservoirs, pumping stations and water storage tanks, 4 water treatment plants and 575 km of pipes. The model has direct links to GIS and SCADA data to optimize operator performance.

Djordje Andrejevic, BSCE, Head of department of water supply development at Belgrade Water believes that InfoWorks makes it possible to easily integrate different maps in the model, and to instantly view simulation results:

“For users, it is very important that InfoWorks communicates well with all the hydraulic and GIS programs we had used before. But it is the graphical capabilities of InfoWorks that we find particularly useful. Flexible and detailed visual representations will enable us to see the big picture and performance over time as well as focus down on the performance of individual pressure zones or installations. By the middle of next year InfoWorks will have helped us to balance all four of our water supply zones and at the end of this year the SCADA system will be in operation and direct connection with live data will be possible. At this moment the advantage of InfoWorks is that we can use GIS for model building and presenting results but soon we will be able to utilize many more of the benefits of the InfoWorks software.”

By monitoring and analyzing network performance at a strategic level across the supply and distribution system, Belgrade Waterworks is already making significant headway in improving system performance, for instance managing flow pressures and levels between zones. The next stage is to develop more detailed models as currently an individual node might represent a group of customers, such as a residential block or neighbourhood, rather than an individual customer. Once this is achieved, it will be possible to analyse network performance at a very low level and identify and resolve local weaknesses in the network.

Positive outlook

The last three years at Belgrade Waterworks are characterized by rising optimism as international commitment and local determination combine to provide the city’s citizens with a water supply and distribution system capable of meeting their current and future needs. Considerable work remains, but by utilizing the latest modeling simulation technologies, Belgrade Waterworks is assured of developing a system whose behavior and performance can be clearly understood and predicted. This in turn will enable the utility to educate consumers about water availability and usage so that the community as a whole can share in the responsibility for the proper use and effective maintenance of the city’s limited water resources.

Customer comments

No comments were found for Renewing Belgrade’s Water Infrastructure. Be the first to comment!