Simulating water flow in variably saturated soils: a comparison of a 3D model with approximation-based formulations

0

Courtesy of IWA Publishing

In hydrological models, variably saturated flow is often described using the Richards equation, either in a fully three-dimensional (3D) implementation or using a quasi-3D framework based on the 1D Richards equation for vertical flow and a flow-approximation for the other two dimensions. However, it is unclear in which configuration or under which boundary conditions these approximations can produce adequate estimates. In this study, two formulations with a quasi-3D approach are benchmarked against a fully 3D model (HYDRUS-3D). The formulations are: the Real-time Integrated Basin Simulator + VEGetation Generator for Interactive Evolution (tRIBS + VEGGIE) model that uses the Dupuit–Forchheimer assumption and the Tethys & Chloris (T&C) model that implements the kinematic approach. Effects of domain slope, hillslope size, event size and initial moisture conditions on simulated runoff and soil moisture dynamics are examined in event-based simulations at the hillslope scale. The Dupuit–Forchheimer assumption (tRIBS-VEGGIE) produces deviations from the HYDRUS-3D solutions only for simulations with initially dry soil. Using the kinematic approach (T&C) results in deviations from the 3D solution primarily for the small hillslope domain in combination with a gentle slope angle. This applies especially to the partition between subsurface and surface runoff production, with T&C being biased towards the latter. For all other cases investigated, the simpler formulations provide reasonable approximations of the 3D model.

Customer comments

No comments were found for Simulating water flow in variably saturated soils: a comparison of a 3D model with approximation-based formulations. Be the first to comment!