Synergistic effects of inorganic salt and surfactant on phenanthrene removal from aqueous solution by sediment

0
- By: , , ,

Courtesy of IWA Publishing

The economic and effective application of surfactant enhanced remediation (SER) technology in a sediment-freshwater/saline water system was investigated by batch method using the combined effects of inorganic salt (sodium chloride, NaCl) and anionic surfactant (sodium dodecylbenzene sulfonate (SDBS)) on phenanthrene (PHE) removal via sorption by sediment. In all cases, PHE sorption followed a linear equation and partition as the main mechanism for PHE removal from aqueous solution. Separate addition of SDBS (2 mmol L−1) and NaCl (2–100 mmol L−1) moderately enhanced PHE removal, while with their combined addition the enhancement was substantial, and the removal efficiency achieved a peak of 92.8%. The combined effect expressed a synergy, and the sorption enhancement increased by factors of 2.7, 3.2 and 3.4 when compared with the sum of the separate entities at elevated salinity. This was because the sorbed SDBS, with increasing amount and a high packing conformation at elevated salinity, outcompeted aqueous SDBS for PHE partition. Moreover, a combination of 2 mmol L−1 SDBS and 2 mmol L−1 NaCl was optimal for PHE removal. Therefore, SER technology appears more effective for PHE removal in saline water than in freshwater, and preliminary water quality monitoring is essential for economic and efficient SER application.

Customer comments

No comments were found for Synergistic effects of inorganic salt and surfactant on phenanthrene removal from aqueous solution by sediment. Be the first to comment!